Trouble with transactions

Evan Jones
http://evanjones.ca

A love story

|
.ﬂ \;\

..with transactions

& 4

| R
..With tran%actlons

correct

Transactions = Drograms

A four year romance

A four year romance

Main memory transactions

A four year romance

Main memory transactions

Automatic partitioning

A four year romance

Main memory transactions

Consolidating workloads

Automatic partitioning

nce
four year roma
A fo

ctio ’
emory transa
N m

Main

TTs INSTITU TE
Februa,y 015

Author ..

Cem'ﬁed by .

atic partitio
m
Auto

Mitre

Mitre

Applications, not databases

connection.begin transaction()
print connection.query balance()
... do some computation

print connection.query balance()
connection.commit()

connection.begin transaction()

print connection.query balance() = $1000
... do some computation

print connection.query balance()
connection.commit()

connection.begin transaction()

print connection.query balance() = $1000
... do some computation ...

print connection.query_balance() = $1500
connection.commit()

connection.begin transaction()
print connection.query balance() = $1000
... do some computation ...

print connection.query_balance() = $1500 39
connection.commit()

9 41: Weak defaults

Transactions = Serializability

Postgres: Read committed
MySQL/InnoDB: “Repeatable read”
(reality: something weird)

9 41: Weak defaults

Transactions = Serializability ¥

Postgres: Read committed
MySQL/InnoDB: “Repeatable read”
(reality: something weird)

4

Transactions = Serializability ¥
Postgres: Read committed

MySQL/InnoDB: “Repeatable read”
(reality: something weird)

Set SERIALIZABLE by default

try:
connection.begin transaction()
balance = connection.query balance()
connection.update balance(balance - 500)
some_function(connection)
connection.commit()

except e:
connection.rollback()
print connection.query balance()

try:
connection.begin transaction()
balance = connection.query balance() = $1000
connection.update balance(balance - 500)
some_function(connection)
connection.commit()
except e:
connection.rollback()
print connection.query balance()

try:
connection.begin transaction()
balance = connection.query balance() = $1000
connection.update balance(balance - 500) = okay!
some_function(connection)
connection.commit()
except e:
connection.rollback()
print connection.query balance()

try:
connection.begin transaction()

balance = connection.query balance() = $1000
connection.update balance(balance - 500) = okay!
some_function(connection) Exception
connection.commit()

except e:

connection.rollback()
print connection.query balance()

try:
connection.begin transaction()

balance = connection.query balance() = $1000
connection.update balance(balance - 500) = okay!
some_function(connection) Exception
connection.commit()

except e:

connection.rollback()
print connection.query balance() = $500

try:
connection.begin transaction()

balance = connection.query balance() = $1000
connection.update balance(balance - 500) = okay!
some_function(connection) Exception
connection.commit()

except e:
connection.rollback()
print connection.query_ balance() = $500

4

try:
connection.begin transaction()

balance = connection.query balance() = $1000
connection.update balance(balance - 500) = okay!
some_function(connection) Exception
connection.commit()

except e:
connection.rollback()
print connection.query_ balance() = $500

4

@42: Implicit begin

some_function committed (my fault)
DB automatically started new txn

4

some_function committed (my fault)
DB automatically started new txn

If you begin, you commit

Like memory in C/C++
Nested transactions can help
Don’t implicitly start transactions

Transactions: Use with care

« Communication with external systems
 Accidental long running transactions
 Retry loops for concurrency errors

« Communication with external systems
 Accidental long running transactions
 Retry loops for concurrency errors

Make it hard to use systems
incorrectly

http://evanjones.ca/

