TROUBLE WITH TRANSACTIONS

Evan Jones & MITRO
@epcjones https.//www.mitro.co



Transactions make it easier to
write correct applications



Transactions are slow
and hard to scale



PhD research:
Make transactions fast across
many machines



o

MITRO

Password manager for organizations

Application using Postgres



We use
transactions!



Weuse @@
transactions!

4



Transactions cause bugs



%>

Transactions
Cause bugs &P

<)



CHANGE PASSWORD TITLE

begin transaction

if user does not have write permission:
throw NoPermission

update password title

commit transaction

SYMPTOM
some requests block for nearly 60s



CHANGE PASSWORD TITLE

if user does not have write permission:
throw NoPermission

SYMPTOM
some requests block for nearly 60s



If you begin, you must commit/abort

Open transactions hold locks, cause conflicts
Easy to screw up error paths




If you don’t begin, never commit/abort

Deeply nested function calls commit()
mplicitly start new transaction
Result: partially committed data




ONE DAY, BROWSING THE LOG..

org.postgresqgl.util.PSQLException: ERROR:
could not serialize access due to read/
write dependencies among transactions

Detail: Reason code: Canceled on conflict
out to pivot 31675867, during read.

Hint: The transaction might succeed if
retried.

at org.postgresql.core.v3.QueryExecutorImpl.receiveErrorResponse(QueryExecutorImpl.java:2157)

at org.postgresql.core.v3.QueryExecutorImpl.processResults(QueryExecutorImpl.java:1886)

at org.postgresql.core.v3.QueryExecutorImpl.execute(QueryExecutorImpl.java:255)

at org.postgresql.jdbc2.Abstractldbc2Statement.execute(Abstractldbc2Statement.java:555)

at org.postgresql.jdbc2.Abstractldbc2Statement.executeWithFlags (Abstractldbc2Statement.java:417)
at org.postgresql.jdbc2.Abstractldbc2Statement.executeQuery(Abstractldbc2Statement.java:302)



ONE DAY, BROWSING THE LOG..

Hint: The transaction might succeed if
retried.



ALWAYS RETRY

Concurrency errors can happen anywhere
Wrap transactions in a retry loop



ALWAYS RETRY

Concurrency errors can happen anywhere
Wrap transactions in a retry loop

while true:

begin transaction
try:
doWork()
commit transaction
break
except e:
rollback transaction
if not e.isConcurrencyError():
throw e



STARTING A BACKGROUND TASK

begin transaction
insert data

start task

respond to user
commit transaction

SYMPTOM
not found from background task



COMMUNICATE AFTER COMMIT

Correctly handles aborts
Reliability? Your problem.

At least once:

* Record task in DB (original txn)
* Retry until success
* Remove task from DB (new txn)




APPLICATION
“CONCURRENCY CONTROL"”

Users edit the access list at the same time



APPLICATION
“CONCURRENCY CONTROL"”

Users edit the access list at the same time

DROPBOX
First write wins, others fail (conflicts)

TICKETMASTER
First access blocks others

EVERY APP EVER
Last write silently wins



TRANSACTIONS:
NONE OF THE ABOVE

First write wins, others fail: Implement OCC

First access blocks: keep transaction open?

Last write wins: no transaction / weak isolation



KEEP TRANSACTION OPEN?

Limit to number of concurrent transactions
Client is slow: blocks others

Client disappears: blocks others

NOT A LONG TERM SOLUTION



TROUBLE WITH TRANSACTIONS

* |f you begin, always commit/abort

* If you don’t begin, never commit/abort
e Retry concurrency aborts
 Communicate after commit

* Never hold txn across client round trips



WHY DID | MAKE THESE MISTAKES?

| didn’t read the documentation
| didn’t write my code carefully

Sam Madden should revoke my PhD



The interface makes it
easy to make mistakes



OTHER INTERFACE PROBLEMS

Schema evolution * Reusing data with
» Testing other systems

° Programming e Performance
language integration ~ debugging

» Backups * Replication



LET'S MAKE USABLE DATABASES



LET'S MAKE USABLE DATABASES

Evan Jones & MITRO
@epcjones https.//www.mitro.co



