Lookup Tables: Fine-Grained Partitioning for
Distributed Databases

Aubrey L. Tatarowicz #*, Carlo Curino #2, Evan P. C. Jones #3, Sam Madden #*

Massachusetts Institute of Technology, USA
'altat@alum.mit.edu
2kxrl@yahoo-inc.com

3

evanjl@csail.mit.edu

4“madden@csail.mit.edu

Abstract—The standard way to scale a distributed OLTP
DBMS is to horizontally partition data across several nodes.
Ideally, this results in each query/transaction being executed at
just one node, to avoid the overhead of distribution and allow
the system to scale by adding nodes. For some applications,
simple strategies such as hashing on primary key provide this
property. Unfortunately, for many applications, including social
networking and order-fulfillment, simple partitioning schemes
applied to many-to-many relationships create a large fraction
of distributed queries/transactions. What is needed is a fine-
grained partitioning, where related individual tuples (e.g., cliques
of friends) are co-located together in the same partition.

Maintaining a fine-grained partitioning requires storing the
location of each tuple. We call this metadata a lookup table. We
present a design that efficiently stores very large tables and main-
tains them as the database is modified. We show they improve
scalability for several difficult to partition database workloads,
including Wikipedia, Twitter, and TPC-E. Our implementation
provides 40% to 300% better throughput on these workloads
than simple range or hash partitioning.

I. INTRODUCTION

Partitioning is an essential strategy for scaling database
workloads. In order to be effective for web and OLTP work-
loads, a partitioning strategy should minimize the number of
nodes involved in answering a query or transaction [1], thus
limiting distribution overhead and enabling efficient scale-out.

In web and OLTP databases, the most common strategy
is to horizontally partition the database using hash or range
partitioning. This is used by commercially available distributed
databases and it works well in many simple applications.
For example, in an email application, where each user only
accesses his or her own data, hash partitioning by user
id effectively places each user’s data in separate partitions,
requiring very few distributed queries or transactions.

In other cases, such as social networking workloads like
Twitter and Facebook, there is no obvious partitioning that
will result in most queries operating on a single partition.
For example, consider placing one user’s posts in a single
partition (partitioning by author). A common operation is
listing a user’s friends’ recent posts, which now needs to
query multiple partitions. Alternatively, replicating a user’s
posts on his or her friends’ partitions allows this “recent posts”
query to go to a single partition, but requires updates to be
sent to multiple partitions. This simple example demonstrates
how most workloads involving many-to-many relationships are
hard to partition. Such relationships occur in many places,

e.g., order processing applications where orders are issued to
suppliers or brokers that service many customers (as modeled
by TPC-E) or message boards where users post on multiple
forums (with queries to search for posts by forum or user).

One solution to this problem is to use a fine-grained
partitioning strategy, where tuples are allocated to partitions
in a way that exploits relationships between records. In our
social networking example, a user and his or her friends can
be co-located such that some queries go to just one partition.
Thus, a careful assignment of tuples to partitions can reduce
or eliminate distributed transactions, allowing a workload to
be efficiently scaled across multiple machines.

A second problem with traditional partitioning is that while
queries on the partitioning attribute go to a single partition,
queries on other attributes must be broadcast to all partitions.
For example, for Wikipedia, two of the most common queries
select an article either by a numeric id or by title. No matter
which attribute is chosen for partitioning, the queries on
the other attribute need to be sent to all partitions. What
is needed to address this is a partition index that specifies
which partitions contain tuples matching a given attribute
value (e.g., article id), without partitioning the data by those
attributes. Others have proposed using distributed secondary
indexes to solve this problem, but they require two network
round trips to two different partitions [2]. Another alternative
are multi-attribute indexes, which require accessing a fraction
of the partitions instead of all of them (e.g. v/N for two
attributes) [3]. While this is an improvement, it still requires
more work as the system grows, which hampers scalability.

To solve both the fine-grained partitioning and partition
index problems, we introduce lookup tables. Lookup tables
map from a key to a set of partition ids that store the
corresponding tuples. This allows the administrator to partition
tuples in an arbitrary (fine-grained) way. Furthermore, lookup
tables can be used as partition indexes, since they specify
where to find a tuple with a given key value, even if the table
is not partitioned according to that key. A key property is that
with modern systems, lookup tables are small enough that they
can be cached in memory on database query routers, even for
very large databases. Thus, they add minimal overhead when
routing queries in a distributed database.

To evaluate this idea, we built a database front-end that uses
lookup tables to execute queries in a shared-nothing distributed

mailto:altat@alum.mit.edu
mailto:krl@yahoo-inc.com
mailto:evanj@csail.mit.edu
mailto:madden@csail.mit.edu

(ClientAppq (CIientApp} (CIiemApp}
((woec] [upBc] [JpBG]

/&ouler Protocol

MySQL Native Protocol

NODE 1 NODE 2 NODE 3 NODE K
(Agent)| |(CAgent)| [(CAgent) (Agent)
[MySQL] [MySQL] [MySQL] [MySQL]

(3303 0D

Architecture of the Lookup Table Partitioning System

Fig. 1.

database. In our design, query routers send queries to backend
databases (unmodified MySQL instances, in our case), which
host the partitions. Lookup tables are stored in memory, and
consulted to determine which backends should run each query.
We show that this architecture allows us to achieve linear
scale-out on several difficult to partition datasets: a TPC-E-
like transactional benchmark, a Wikipedia benchmark using
real data from January 2008 (=3M tuples), and a snapshot
of the Twitter social graph from August 2009 (4B tuples).
Compared to hash or range-partitioning, we find that lookup
tables can provide up to a factor of 3 greater throughput on a
10 node cluster. Furthermore, both hash and range partitioning
achieve very limited scale-out on these workloads, suggesting
that fine-grained partitioning is necessary for them to scale.

Though lookup tables are a simple idea, making them work
well involves a number of challenges. First, lookup tables must
be stored compactly in RAM, to avoid adding additional disk
accesses when processing queries. In this paper, we compare
several representations and compression techniques that still
allow efficient random access to the table. On our datasets,
these techniques result in 3x to 250x compression without
impacting query throughput. A second challenge is efficiently
maintaining lookup tables in the presence of updates; we
describe a simple set of techniques that guarantee that query
routers and backend nodes remain consistent, even in the
presence of failures.

Finally, we note that this paper is not about finding the
best fine-grained partitioning. Instead, our goal is to show that
lookup tables can improve the performance of many different
workloads. We demonstrate that several existing partitioning
schemes [1], [4], as well as manual partitioning can be
implemented with lookup tables. They result in excellent
performance, providing 40% to 300% better throughput on our
workloads than either range or hash partitioning and providing
better scale-out performance.

Next we provide a high level overview of our approach,
including the system architecture and a discussion of the core
concept behind lookup tables.

II. OVERVIEW

The structure of our system is shown in Fig. 1. Applications
interact with the database as if it is a traditional single
system, using our JDBC driver. Our system consists of two
layers: backend databases, which store the data, and query
routers that contain the lookup table and partitioning metadata.

Each backend runs an unmodified DBMS (MySQL in our
prototype), plus an agent that manages updates to the lookup
tables, described in Section IV. Routers receive an application
query and execute it by distributing queries to the appropriate
backends. We use a typical presumed abort two-phase commit
protocol with the read-only participant optimization to manage
distributed transactions across backends, using the XA trans-
actions supported by most SQL databases. This design allows
the throughput to be scaled by adding more machines. Adding
backends requires the data to be partitioned appropriately, but
adding routers can be done on demand; they do not maintain
any durable state, except for distributed transaction commit
logs. Routers process queries from multiple clients in parallel,
and can also dispatch sub-queries to backends in parallel.
Thus, a single router can service many clients and backends,
but more can be added to service additional requests.

The routers are given the network address for each back-
end, the schema, and the partitioning metadata when they
are started. The partitioning metadata describes how data is
divided across the backends, which can either be traditional
hash or range partitioning, or lookup tables. To simplify our
initial description, we describe our basic approach assuming
that the lookup table does not change, and that each router has
a copy of it when it starts. We discuss how routers maintain
their copy of the lookup table when data is inserted, updated,
and deleted in Section IV.

To describe the basic operation of lookup tables, consider
the social networking example from the introduction. This
example contains two tables: users and followers, each
identified by an integer primary key. The followers relation
contains two foreign keys to the users table: source and
destination. This creates a many-to-many relationship,
from each user to the users that they follow. The users table
contains a status field. Users want to get the status for all users
they are following. This is done with the following two SQL
queries, the first of which fetches the list of user ids that are
followed and the second of which fetches the status.
R=SELECT destination FROM followers WHERE source=x
SELECT * FROM users WHERE id IN (R)

For traditional hash partitioning, we can partition the
users table by id, and partition the followers table by
source. For lookup tables, we can partition users such that
related users (e.g., that share many friends) are stored on
the same node, and use the same lookup table to partition
followers by source. We evaluate how effective this type
of clustering can be with real data in Section VI-A; in that
case, we use various partitioning schemes to figure out how
to initially place users. As noted above, our goal in this
paper is not to propose new partitioning strategies, but to show
that lookup tables are flexible enough to implement any of a
number of strategies and can lead to much better performance
than simple hash or range partitioning.

A. Basic Lookup Table Operation

When a router receives a query from the application, it
must determine which backends store the data that is refer-
enced. For queries referencing a column that uses a lookup
table (e.g., SELECT destination FROM followers

WHERE source = 42), the router consults its local copy
of the lookup table and determines where to send the query.
In the case of simple equality predicates, the query can simply
be passed through to a single backend. If multiple backends are
referenced (e.g., via an IN clause) then the query is rewritten
and a separate query is sent to each backend. The results
must then be merged in an appropriate way (e.g., via unions,
sorts, or aggregates) before being returned to the client. More
complex queries may require multiple rounds of sub-queries.
Our query routing protocol is discussed in Section III-B.

For our example, the first query is sent to a single partition
based on the lookup table value for user id = z. The second
query is then sent to a list of partitions, based on the user ids
returned by the first query. For each user id, the destination
partition is found in the table. This gives us the freedom
to place users on any partition. In this case, ideally we can
determine an intelligent partitioning that co-locates a user with
the users they are following. As the data is divided across
more machines, the number of partitions that is accessed by
this second query should stay small.

For hash partitioning, the second query accesses several
partitions, since the users are uniformly distributed across
partitions. When we attempt to scale this system by adding
more machines, the query accesses more partitions. This limits
the scalability of this system. We measure the coordination
overhead of such distributed queries in Section VI.

B. Storing Lookup Tables

In order to use lookup tables to route queries, they must be
stored in RAM at each router, in order to avoid imposing any
performance penalty. Conceptually, a lookup table is a map
between a value and a list of partitions where matching values
are stored. The common case is mapping a unique primary
integer key to a partition. The straightforward representation
for this case consists of an in-memory map from an 8-byte
integer key to a 2 or 4-byte integer partition id for each tuple,
requiring at least 10 bytes per tuple to be stored in memory,
plus additional overhead for the data structure. Unfortunately,
this implementation is impractical for large tables with trillions
of tuples, unless we want to require our frontend nodes to have
terabytes of RAM. Hence, in Section V we present a number
of implementation techniques that allow large lookup tables
to be stored efficiently in RAM.

ITII. LOOKUP TABLE QUERY PROCESSING
In this section, we describe how lookup tables are defined
and used for distributed query planning.

A. Defining Lookup Tables

We begin with some basic SQL syntax a database admin-
istrator can use to define and populate lookup tables. These
commands define the metadata used by the query router to
perform query execution. To illustrate these commands, we
again use our example users and followers tables.

First, to specify that the users table should be partitioned
into partl and part2, we can write:
CREATE TABLE users (

id int, ..., PRIMARY KEY (id),

PARTITION BY lookup(id) ON (partl,
DEFAULT NEW ON hash(id));

part2)

This says that users is partitioned with a lookup table
on id, and that new tuples should be added by hashing on
id. Here, we require that the partitioning attribute be unique
(i.e., each tuple resides on only one backend.) The metadata
about the assignment of logical partitions to physical node is
maintained separately to allow physical independence.

We can also explicitly place one or more users into a
given partition, using ALTER TABLE:

ALTER TABLE users SET PARTITION=part2 WHERE 1id=27;

We also allow tuples to be replicated, such that a given
id maps to more than one partition, by specifying a list of
partitions in the SET PARTITION = clause.

Here, the WHERE clause can contain an arbitrary expression
specifying a subset of tuples. Additionally, we provide a way
to load a lookup table from an input file that specifies a
mapping from the partitioning key to the logical partition (and
optionally the physical node) on which it should be stored (this
makes it easy to use third party partitioning tools to generate
mappings and load them into the database.)

To specify that the followers table should be partitioned
in the same way as the users table, we can create a location
dependency between the two tables, as follows (similar syntax
is used in the table definition for the followers table):

ALTER TABLE followers

PARTITION BY lookup (source) SAME AS users;

This specifies that each followers tuple £ should be
placed on the same partition as the users tuple u where
u.id = f.source. This is important for joins between
the followers and users table, since it guarantees that
all matching tuples will reside in the same partition—this
enables more effective join strategies. Also, this enables reuse,
meaning that we only need to keep one copy of the lookup
table for both attributes.

Finally, it is possible to define partition indexes (where a
lookup table is defined on table that is already partitioned in
some other way) using the CREATE SECONDARY LOOKUP
command, as follows:

CREATE SECONDARY LOOKUP 1_a ON users (name);

This specifies that a lookup table 1_a should be maintained.
This allows the router(s) to figure out which logical partition
(and thus physical node) a given user resides on when pre-
sented with a query that specifies that user’s name. Secondary
lookups may be non-unique (e.g., two user’s may be named
’Joe’ and be on different physical backends.)

B. Query Planning

Distributed query planning is a well-studied problem, there-
fore in the following we limit our discussion to clarify some
non-obvious aspects of query planning over look-up tables.

In order to plan queries across our distributed database, each
router maintains a copy of the partitioning metadata defined by
the above commands. This metadata describes how each table
is partitioned or replicated, which may include dependencies
between tables. This metadata does not include the lookup
table itself, which is stored across all partitions. In this work,
we assume that the database schema and partitioning strategy

do not change. However, the lookup table itself may change,
for example by inserting or deleting tuples, or moving tuples
from one partition to another.

The router parses each query to extract the tables and
attributes that are being accessed. This list is compared with
the partitioning strategy. The goal is to push the execution of
queries to the backend nodes, involving as few of them as
possible. As a default, the system will fetch all data required
by the query (i.e., for each table, run a select query to fetch
the data from each backend node), and then execute the query
locally at the router. This is inefficient but correct. In the
following, we discuss simple heuristics that improve this, by
pushing predicates and query computation to the backend
nodes for many common scenarios. The heuristics we present
cover all of the queries from our experimental datasets.

Single-table queries: For single table queries, the router
first identifies the predicates that are on the table’s partitioning
key. The router then consults the lookup table to find which
backends tuples that match this predicate reside on, and
generates sub-queries from the original query such that each
can be answered by a single backend. The sub-queries are then
sent and results are combined by the appropriate operation
(union, sort, etc) before returning the results to the user. For
equality predicates (or IN expressions), it is straightforward to
perform this lookup and identify the matching backends. For
range queries, broadcasting the query to all backends is the
default strategy. For countable ranges, such as finite integer
ranges, it is possible to reduce the number of participants by
looking up each value in the range and adding each resulting
partition to the set of participants. For uncountable ranges,
such as variable length string ranges, it is impossible to look
up each value, so the router falls back to a broadcast query.

Updates typically touch a single table, and are therefore
treated similarly to single-table queries. The exception is that
when updating a partitioning key, the tuple may actually need
to be moved or a lookup table updated. The router detects
these cases and handles them explicitly. Inserts, moves, and
deletes for lookup tables are described in Section IV.

Multi-table queries: Joins can only be pushed down if
the two tables are partitioned in the same way (e.g., on the
same attribute, using the same lookup table.) In this case, one
join query is generated for each backend, and the result is
UNION’ed at the router. In many OLTP workloads, there will
be additional single-table equality predicates that cause results
to be only produced at one backend (e.g., if we are looking
up the message of a particular user in our social networking
application, with users and messages both partitioned using
the same lookup table on users.id). We detect this case
and send the query only to one backend.

For joins over tables partitioned on different attributes
(which do not arise in our test cases) we evaluate these by
collecting tuples from each backend that satisfy the non-join
predicates, and evaluating the join at the router. This is clearly
inefficient, and could be optimized using any of the traditional
strategies for evaluating distributed joins [5]. These strategies,
as well as more complex queries, such as nested expressions,
may result in multiple rounds of communication between the

router and backends to process a single query.

IV. START-UP, UPDATES AND RECOVERY

In the previous section, we assumed that routers have a
copy of the lookup table when they start, and that the table
does not change. In this section, we relax these assumptions
and describe how our system handles start-up, updates, and
recovery. When starting, each router must know the network
address of each backend. In our research prototype this is
part of the static configuration data for each router, but a
production implementation would instead load this from a
metadata service such as Zookeeper [6], allowing partitions
to be added, moved, and removed. The router then attempts
to contact other routers to copy their lookup table. As a last
resort, it contacts each backend agent to obtain the latest copy
of each lookup table subset. The backend agent must scan the
appropriate tables to generate the set of keys stored on that
partition. Thus, there is no additional durable state. This does
not affect the recovery time, as this scanning is a low-priority
background task that is only needed when new routers start.

After the initial lookup table is loaded on the routers, it may
become stale as data is inserted, deleted and moved between
backends. To ensure correctness, the copy of the lookup table
at each router is considered a cache that may not be up to date.
This means that routers only store soft state, allowing them to
be added or removed without distributed coordination. To keep
the routers up to date, backends piggyback changes with query
responses. However, this is only a performance optimization,
and is not required for correctness.

Lookup tables are usually unique, meaning that each key
maps to a single partition. This happens when the lookup table
is on a unique key, as there is only one tuple for a given key,
and thus only one partition. However, it also happens for non-
unique keys if the table is partitioned on the lookup table key.
This means there can be multiple tuples matching a given
value, but they are all stored in the same partition. This is in
contrast to non-unique lookup tables, where for a given value
there may be multiple tuples located on multiple partitions.

For unique lookup tables, the existence of a tuple on a
backend indicates that the query was routed correctly because
there cannot be any other partition that contains matching
tuples. If no tuples are found, we may have an incorrect
lookup table entry, and so fall back to a broadcast query. This
validation step is performed by the router. The pseudocode is
shown in Fig. 2. There are three cases to consider: the router’s
lookup table is up to date, the table is stale, or there is no entry.
Up to date: The query goes to the correct destination and at

least one tuple is found, so the router knows the lookup
table entry is correct.

Stale lookup table entry: The query is sent to a partition
that used to store the tuple, but the tuple has been
deleted or moved. In either case, the tuple is not found
so the router will fall back to broadcasting the query
everywhere. This is guaranteed to find moved tuples, or
find no tuple if it has been deleted.

No lookup table entry: The query is first sent to the de-
fault partition based on the key (as defined by the
DEFAULT NEW expression in the table definition—see

Section III-A). If the tuple is found, then the correct
answer is returned. If a tuple is not found, a broadcast
query is required to locate the tuple and update the lookup
table.

This simple scheme relies on expensive broadcast queries
when a tuple is not found. This happens for the following
classes of queries:

o Queries for keys that do not exist. These queries are rare
for most applications, although they can happen if users
mis-type, or if external references to deleted data still
exist (e.g., web links to deleted pages).

o Inserts with an explicit primary key on tables partitioned
using a lookup table on the primary key. These inserts
need to query all partitions to enforce uniqueness, since
a tuple with the given key could exist on any parti-
tion. However, auto-increment inserts can be handled
efficiently by sending them to any partition, and allowing
the partition to assign an unused id. This is the common
case for the OLTP and web workloads that we target.
Foreign key constraints are typically not enforced in
these workloads due to the performance cost. However,
lookup tables do not change how they are implemented
by querying the appropriate indexes of other tables. Thus,
they can be supposed if desired.

e Queries for recently inserted keys. We reduce the prob-
ability this occurs by pushing lookup table updates to
routers on a “best effort” basis, and by piggybacking
updates along with other queries.

This simple scheme is efficient for most applications, since
the vast majority of queries can be sent to a single partition.
If desired, we can more efficiently handle queries for missing
and deleted tuples by creating “tombstone” records in the
backend databases. Specifically, we can create records for the
next N unassigned ids, but mark them as deleted via a special
“deleted” column in the schema.

When a statement arrives for one of these ids it will be sent
to exactly one partition. In case of inserts, deleted tuples will
be marked as “live,” and the existing values replaced with the
new values. In case of other queries, the value of the “deleted”
column will be checked to see if the application should see
the data. Similarly, when deleting tuples, the tuple is marked
as deleted, without actually removing it. This ensures that
queries for this deleted tuple continue to be directed to the
correct partition. Eventually, very old tuples that are no longer
queried can be actually removed. This “tombstone” approach
is a simple way to handle these problematic queries.

A. Non-Unique Lookup Tables

Non-unique lookup tables are uncommon, but arise for two
reasons. First, a lookup table on a non-unique attribute that
is not used to partition the table will map a single value
to multiple partitions. Second, an application may choose to
replicate certain tuples across multiple partitions to make reads
more efficient, while making updates more expensive. The
previous protocol relies on the fact that if at least one tuple is
found, that backend server must contain all tuples for the given
key, and thus the correct answer was returned. However, with

non-unique lookup tables, tuples can be found even if some
partitions are incorrectly omitted. It is always correct to query
all partitions, but that is also very expensive.

To verify that all tuples matching a given value were found
without querying all partitions, we designate one partition for
each value as the primary partition. This partition records
the set of partitions that store tuples matching the value.
This information is maintained in a transactionally consistent
fashion by using distributed transactions when new partitions
are added to the set or existing partitions are removed. This
data is persistently stored in each backend, as an additional
column in the table. Since there is a unique primary partition
for each value, we use a protocol similar to the previous one
to ensure that the router finds it. When the primary partition
is found, the router can verify that the correct partitions were
queried. Secondary partitions store the identity of the current
primary. On any query, the primary returns the current list of
partitions for the given value, so the router can easily verify
that it queried the correct set of partitions. If not, it can send
the query to the partitions that were missed the first time.

The common case for this protocol is that the lookup table
is up to date, so every statement is directed to the correct
set of partitions and no additional messages are required. For
inserts or deletes, the typical case is that the partition contains
other tuples with the lookup table value, and thus the primary
partition does not need to be updated. Thus, it is only in the
rare cases where the partition set changes that the primary
partition needs updating.

The details of query execution on non-unique lookup tables
is shown in the routerStatement procedure in Fig. IV-A
(inserts and deletes are described below). If an entry exists,
the router first sends the query to the set of partitions cached
in its lookup table. After retrieving the results, it looks for a
partition list from the primary. If a list is returned, the router
calculates the set of partitions that were missing from its first
round of queries. If the lookup table was up to date, then the
set of missing partitions will be empty. If there is no primary
response in the initial round of responses, then the lookup
table was incorrect and the set of missing partitions is set to
all remaining partitions. Finally, the router queries the set of
missing partitions and combines the results from all partitions.
This ensures that all partitions with a given value are queried,
even if the router’s information is incorrect.

Inserts and deletes must keep the primary partition’s list up
to date. The router does this as part of the transaction that
includes the insert or delete. The backend agent detects when
the first tuple for a value is added to a partition, or when
the only tuple for a value is deleted. It return an indication
that the primary must be updated to the router. When the
router receives this message, it adds or deletes the backend
from the partition list at the primary. If the last tuple is being
removed from the primary, then the router selects a secondary
partition at random to become the new primary and informs
all secondary partitions of the change. Since this is performed
as part of a distributed transaction, failure handling and
concurrent updates are handled correctly. The insert protocol
is shown in the routerinsert and backendlnsert procedures

function executeStatement(statement):

// find partition in lookup table, or default partition
lookupKey = parse lookup table key from statement
if lookup table entry for lookupKey exists:
destPart = lookup table entry for lookupKey
else if lookup table has a defaultPartitionFunction:
destPart = defaultPartitionFunction(/ookupKey)
if destPart is not null:
resultSet = execute statement on destPart
if statement matched at least one tuple:
/I correct partition in the lookup table
return resultSet

/I wrong partition or no entry in the lookup table
resultSets = broadcast statement to all partitions
for partitionld, resultSet in resultSets:

function nonUniqueRouterStatement(statement):
lookupKey = get lookup table key from statement
missingParts = all partitions
results = ()
if lookup table entry for lookupKey exists:
partList = entry for lookupKey
results = send statement to partList
primaryFound = false
for result in results:
if result.partList is not empty:
primaryFound = true
missingParts = result.partList — partList
break
if not primaryFound:
/I the lookup table is incorrect
missingParts = all partitions - partList:

function nonUniqueRouterlnsert(tuple, backend):

/I use partitioning key for insert and check constraints
result, status = insert tuple as usual
if status is no primary update needed:

return result
lookupKey = extract lookup table key from tuple
primary = lookup table entry for lookupKey
result = send (lookupKey, backend) to primary
if result is success:

return result
// failed update or no entry: broadcast
results = broadcast (lookupKey, backend) mapping
if results does not contain a success result:

make backend the primary for lookupKey
return result

if statement matched at least one tuple:
// found the correct partition
set lookup table key lookupKey — partitionld
return resultSet

for result in results:

// no tuple: return an empty result set
remove lookupKey from lookup table, if it exists
return first resultSet from resultSets

break
return results

Fig. 2. Lookup table validation for unique lookup

tables Fig. 3.

in Fig. IV-A. The delete protocol (not shown) works similarly.

V. STORAGE ALTERNATIVES

A lookup table is a mapping from each distinct value of a
field of a database table to a logical partition identifier (or a
set if we allow lookups on non-unique fields). In our current
prototype we have two basic implementations of lookup tables:
hash tables and arrays. Hash tables can support any data type
and sparse key spaces, and hence are a good default choice.
Arrays work better for dense key-spaces, since hash tables
have some memory overhead. For arrays, we use the attribute
value as the array offset, possibly modified by an offset to
account for ids that do not start at zero. This avoids explicitly
storing the key and has minimal data structure overhead, but
becomes more wasteful as the data grows sparser, since some
keys will have no values.

We ran a series of experiments to test the scalability of
these two implementations. We found that the throughput of
arrays is about 4x the throughput of hash tables, but both
implementations can provide greater than 15 million lookups
per second, which should allow a single front-end to perform
routing for almost any query workload. Arrays provide better
memory utilization for dense key-spaces, using about 10x less
RAM when storing dense, 16-bit keys. However, arrays are not
always an option because they require mostly-dense, countable
key spaces (e.g., they cannot be used for variable length
strings). To test the impact of key space density, we compared
our implementations on different key-space densities. When
density falls below 40-50% the hash-map implementation
becomes more memory efficient than an array-based one.

A. Lookup Table Reuse

Whenever location dependencies over fields that are parti-
tioned by lookup tables, it means that two (or more) tables are
partitioned using an identical partitioning strategy. Therefore,
a simple way to reduce the memory footprint of lookup tables
is to reuse the same lookup table in the router for both tables.
This reduces main memory consumption and speeds up the
recovery process, at the cost of a slightly more complex
handling of metadata.

remove lookupKey from the lookup table
results = results U send statement to missingParts

if result.partList is not empty:
// not strictly needed if we were already up-to-date
set lookup table lookupKey — result.partList

function nonUniqueBackendInsert(tuple):
status = no primary update needed
result = insert tuple
if result is success:
lookupKey = lookup key from tuple
keyCount = # tuples where value == lookupKey
if keyCount == 1:
status = primary update needed
return result, status

Lookup table validation for non-unique lookup tables

B. Compressed Tables

We can compress the lookup tables in order to trade CPU
time to reduce space. Specifically, we used Huffman encoding,
which takes advantage of the skew in the frequency of symbols
(partition identifiers). For lookup tables, this skew comes from
two sources: (i) partition size skew, (e.g. due to load balancing
some partitions contain fewer tuples than others), and (ii) range
affinity (e.g., because tuples inserted together tend to be in
the same partition). This last form of skew can be leveraged
by “bucketing” the table and performing separate Huffman
encoding for each bucket.

This concept of bucketing is similar to the adaptive en-
codings used by compression algorithms such as Lempel-
Ziv. However, these adaptive encodings require that the data
be decompressed sequentially. By using Huffman encoding
directly, we can support random lookups by maintaining a
sparse index on each bucket. The index maps a sparse set of
keys to their corresponding offsets in the bucket. To perform
a lookup of a tuple id, we start from the closest indexed key
smaller than the desired tuple and scan forward.

We tested this bucketed Huffman compression on
Wikipedia, Twitter, and TPC-E data (details of these data sets
are in Section VI-A). The compression heavily depends on
the skew of the data, for Wikipedia and Twitter we only have
modest skew, and we obtain (depending on the bucketing)
compression between 2.2x and 4.2x for Wikipedia and 2.7 x
to 3.7x for Twitter. For TPC-E there is a very strong affinity
between ranges of tuples and partition ids, and therefore we
obtain a dramatic 250x compression factor (if TPC-E didn’t
have this somewhat artificial affinity, bucketing performance
would be closer to Wikipedia and Twitter.) We found that
although Huffman encoding slightly increases router CPU
utilization, a single router was still more than sufficient to
saturate 10 backends. Furthermore, our architecture easily
supports multiple routers, suggesting that the CPU overhead
of compression is likely worthwhile.

C. Hybrid Partitioning

Another way of reducing the memory footprint of a lookup
table is to combine the fine-grained partitioning of a lookup
table with the space-efficient representation of range or hash

partitioning. In effect, this treats the lookup table as an
exception list for a simpler strategy. The idea is to place
“important” tuples in specific partitions, while treating the
remaining tuples with a default policy.

To derive a hybrid partitioning, we use decision tree classi-
fiers to generate a rough range partitioning of the data. To
train the classifier, we supply a sample of tuples, labeled
with their partitions. The classifier then produces a set of
intervals that best divide the supplied tuples (according to
their attribute values) into the partitions. Unlike how one
would normally use a classifier, we tune the parameters of the
learning algorithm cause over-fitting (e.g., we turn off cross-
validation and pruning). This is because in this context we
do not want a good generalization of the data, but rather we
want the decision tree classifier to create a more compact
representation of the data. The trained decision tree will
produce correct partitions for a large fraction of the data,
while misclassifying some tuples. We use the set of predicates
produced by the decision tree as our basic range partitioning
(potentially with many small ranges), and build a lookup table
for all misclassifications.

The net effect is that this hybrid partitioning correctly places
all tuples in the desired partitions with a significant memory
savings. For example, on the Twitter dataset the decision tree
correctly places about 76% of the data, which produces almost
a 4x reduction in memory required to store the lookup table.

One advantage of this application of decision trees is that the
runtime of the decision tree training process on large amounts
of data is unimportant for this application. We can arbitrarily
subdivide the data and build independent classifiers for each
subset. This adds a minor space overhead, but avoids concerns
about the decision tree classifier scalability.

D. Partial Lookup Tables

So far we have discussed ways to reduce the memory
footprint while still accurately representing the desired fine-
grained partitioning. If these techniques are not sufficient
to handle a very large database, we can trade memory for
performance, by maintaining only the recently used part of
a lookup table. This can be effective if the data is accessed
with skew, so caching can be effective. The basic approach is
to allow each router to maintain its own least-recently used
lookup table over part of the data. If the id being accessed
is not found in the table, the router falls back to a broadcast
query, as described in Section IV, and adds the mapping to
its current table. This works since routers assume their table
may be stale, thus missing entries are handled correctly.

We use Wikipedia as an example to explain how partial
lookup tables can be used in practice. Based on the analysis
of over 20 billion Wikipedia page accesses (a 10% sample of
4 months of traffic), we know that historical versions of an
article, which represent 95% of the data size, are accessed a
mere 0.06% of the time [7]. The current versions are accessed
with a Zipfian distribution. This means that we can properly
route nearly every query while storing only a small fraction of
the ids in a lookup table. We can route over 99% of the queries
for English Wikipedia using less than 10-15MB of RAM for
lookup tables, as described in Section VI. A similar technique

TABLE I
EXPERIMENTAL SYSTEMS
Description
1 x Xeon 3.2 GHz, 2 GB RAM, 1 x 7200 RPM SATA
2 x Quad-Core Xeon E5520 2.26GHz, 24 GB RAM,
6 x 7200 RPM SAS (5 ms lat.), HW RAID 5
All Linux Ubuntu Server 10.10, Sun Java 1.6.0_22-b04, MySQL 5.5.7
TABLE 11

Num. Machines
10 Backends
2 Client/Router

WORKLOAD SUMMARY

Data Set / Fraction Distribution Properties

Transactions Hashing Range Lookup
Broadcast 2PC | Broadcast 2PC | Broadcast 2PC

Wikipedia

Fetch Page 100% X X X X

Twitter

Insert Tweet 10% X

Tweet By Id 35%

Tweets By User 10% X X X X

Tweets From Follows 40% X X X X

Names of Followers 5% X X X

TPC-E

Trade Order 19.4% X

Trade Result 19.2% X X X X

Trade Status 36.5% X

Customer Position 25.0% X X X X

can be applied to Twitter, since new tweets are accessed much
more frequently that historical tweets.

Although we tested the above compression techniques on all
our datasets, in the results in Section VI, we use uncompressed
lookup tables since they easily fit in memory.

VI. EXPERIMENTAL EVALUATION

In order to evaluate the benefit of using lookup tables, we
ran a number of experiments using several real-world datasets
(described below). We distributed the data across a number
of backend nodes running Linux and MySQL. The detailed
specifications for these systems are listed in Table I. The
backend servers we used are older single-CPU, single-disk
systems, but since we are interested in the relative performance
differences between our configurations, this should not affect
the results presented here. Our prototype query router is
written in Java, and communicates with the backends using
MySQL’s protocol via JDBC. All machines were connected to
the same gigabit Ethernet switch. We verified that the network
was not a bottleneck in any experiment. We use a closed loop
load generator, where we create a large number of clients that
each send one request at a time. This ensures there is sufficient
concurrency to keep each backend fully utilized.

A. Datasets and Usage Examples

In this section, we the real-world data sets we experiment
with, as well as the techniques we used to partition them using
both lookup tables and hash/range partitioning. To perform
partitioning with lookup tables, we use a combination of man-
ual partitioning, existing partitioning tools and semi-automatic
fine-grained partitioning techniques developed for these data
sets. This helps us demonstrate the flexibility of lookup tables
for supporting a variety of partitioning schemes/techniques.

The schemas and the lookup table partitioning for all the
workloads are shown in Fig. 4. In this figure, a red underline
indicates that the table is partitioned on the attribute. A
green highlight indicates that there is a lookup table on the
attribute. A solid black arrow indicates that two attributes have
a location dependency and are partitioned using the SAME AS
clause and share a lookup table. A dashed arrow indicates that

Wikipedia Twitter

follows [IFTIHIEEHIM followers T HITER
[y bid] e [test | . | [ERCHGT .. |

TPC-E
trade NTHECIIN

account EFIEEICTNIN

user id |name I email I

rid | page |text_id |]
—

-
-
-
-

m tweet_id |ussr_id | text Icreate,dale]
—

broker [N customer FEIIZ I
— —

@ partitioning attribute lookup-table on attribute

—— reference + location dependency

— —» reference (attempted co-location)

Fig. 4. Schemas and lookup table partitioning for: Wikipedia, Twitter, TPC-E

the partitioning scheme attempts to co-locate tuples on these
attributes, but there is not a perfect location dependency.

The transactions in each workload are summarized in Ta-
ble II. A mark in the “Broadcast” column indicates that the
transaction contains queries that must be broadcast to all
partitions for that partitioning scheme. A mark in the “2PC”
column indicates a distributed transaction that accesses more
than one partition and must use two-phase commit. Both these
properties limit scalability. The details of these partitioning
approaches are discussed in the rest of this section.

In summary, Wikipedia and TPC-E show that lookup ta-
bles are effective for web-like applications where a table is
accessed via different attributes. Twitter shows that it can
work for difficult to partition many-to-many relationships by
clustering related records. Both TPC-E and Wikipedia contain
one-to-many relationships.

Wikipedia: We extracted a subset of data and operations
from Wikipedia. We used a snapshot of English Wikipedia
from January 2008 and extracted a 100k page subset. This
includes approximately 1.5 million entries in each of the
revision and text tables, and occupies 36 GB of space in
MySQL. The workload is based on an actual trace of user
requests from Wikipedia [7], from which we extracted the
most common operation: fetch the current version of an article.
This request involves three queries: select a page id (pid) by
title, select the page and revision tuples by joining the
page and revision on revision.page = page.pid and
revision.rid = page.latest, then finally select the
text matching the text id from the revision tuple. This operation
is implemented as three separate queries even though it could
be one because of changes in the software over time, MySQL-
specific performance issues, and the various layers of caching
outside the database that we do not model.

The partitioning we present was generated by manually
analyzing the schema and query workload. This is the kind
of analysis that developers do today to optimize distributed
databases. We attempted to find a partitioning that reduces the
number of partitions involved in each transaction and query.
We first consider strategies based on hash or range partitioning.

Alternative 1: Partition page on title, revision on
rid, and text on tid. The first query will be efficient
and go to a single partition. However, the join must be
executed in two steps across all partitions (fetch page by
pid which queries all partitions, then fetch revision
where rid = p.latest). Finally, text can be fetched
directly from one partition, and the read-only distributed

transaction can be committed with another broadcast to
all partitions (because of the 2PC read-only optimization).
This results in a total of 2k 4+ 3 messages.

Alternative 2: Partition page on pid, revision on page
= page.pid, and text on tid. In this case the first
query goes everywhere, the join is pushed down to a
single partition and the final query goes to a single
partition. This results in a total of 2k 4+ 2 messages.

The challenge with this workload is that the page table
is accessed both by title and by pid. Multi-attribute
partitioning, such as MAGIC [3], is an alternative designed
to help with this kind of workload. Using MAGIC with this
workload would mean that the first query would access vk
partitions of the table, while the second query would access
a partially disjoint v/k partitions. The final query could go to
a single partition. This still requires a distributed transaction,
so there would be a total of 4v/k + 1 messages. While this
is better than both hash and range partitioning, this cost still
grows as the size of the system grows.

Lookup tables can handle the multi-attribute lookups with-
out distributed transactions. We hash or range partition page
on title, which makes the first query run on a single
partition. We then build a lookup table on page.pid.
We co-locate revisions together with their corresponding
page by partitioning revision using the lookup table
(revision.page = page.pid). This ensures that the join
query runs on the same partition as the first query. Finally,
we create a lookup table on revision.text_id and
partitioning on text.tid = revision.text_id, again
ensuring that all tuples are located on the same partition.
This makes every transaction execute on a single partition,
for a total of 4 messages. With lookup tables, the number
of messages does not depend on the number of partitions,
meaning this approach can scale when adding machines. The
strategy is shown in Fig. 4, with the primary partitioning
attribute of a table underlined in red, and the lookup table
attributes highlighted in green.

We plot the expected number of messages for these four
schemes in Fig. 5 The differences between these partitioning
schemes become obvious as the number of backends increases.
The number of messages required for hash and range parti-
tioning grows linearly with the number of backends, implying
that this solution will not scale. Multi-attribute partitioning
(MAGIC) scales less than linearly, which means that there will
be some improvement when adding more backends. However,
lookup tables enable a constant number of messages for
growing number of backends and thus better scalability.

—&—alternative 2 f

15 alternative 1
—A— magic
—©— lookup tables

1 2 3 4 5 6
number of backends holding data

7 8

messages per page-read trans

o

Fig. 5. Wikipedia, comparison of alternative solutions.

Exploiting the fact that lookup tables are mostly dense
integers (76 to 92% dense), we use an array implementation
of lookup tables, described in detail in Section V. Moreover,
we reuse lookup tables when there are location dependencies.
In this case, there is one a lookup table shared for both
page.pid and revision.page, and a second table for
revision.text id and text.tid. Therefore, we can
store the 360 million tuples in the complete Wikipedia snap-
shot in less than 200MB of memory, which easily fits in RAM.
This dataset allows us to verify lookup table scalability to large
databases, and demonstrate enable greater scale out.

Twitter: Lookup tables are useful for partitioning com-
plex social network datasets, by grouping “clusters” of users
together. In order to verify this, we obtained a complete
and anonymized snapshot of the Twitter social graph as of
August 2009 containing 51 million users and almost 2 billion
follow relationships [8]. We replicate the follow relationship to
support lookups in both directions by an indexed key in order
to access more efficiently who is being followed as well as
users who are following a given user. This is the way Twitter
organizes their data, as of 2010 [9]. The schema and the lookup
table based partitioning is shown in Fig. 4.

To simulate the application, we synthetically generated
tweets and a query workload based on properties of the
actual web site [9]. Our read/write workload consists of the
following operations: 1) insert a new tweet, 2) read a tweet
by tweet_id, 3) read the 20 most recent tweets of a certain
user, 4) get the 100 most recent tweets of the people a user
follows, and 5) get the names of the people that follow a user.
Operations 4 and 5 are implemented via two separate queries.
The result is a reasonable approximation of a few core features
of Twitter. We use this to compare the performance of lookup
tables to hash partitioning, and to show that we can use lookup
tables with billions of tuples.

We partitioned the Twitter data using hash partitioning and
lookup tables. We do not consider multi-attribute partitioning
here because most of these accesses are by tweet_id, and
those would become requests to vk partitions, greatly reduc-
ing performance. For hash partitioning, we simply partitioned
the tweets table on id and the rest of the tables on user_id,
which we discuss in Section VI-D.

For lookup tables, we also partition on user_id, but we
carefully co-locate users that are socially connected. This
dataset allows us to showcase the flexibility of lookup tables
presenting three different partitioning schemes:

1) A lookup-table based heuristic partitioning algorithm

that clusters users together with their friends, and only
replicates extremely popular users— we devised a very
fast and greedy partitioner that explores each edge in
the social graph only once and tries to group user,
while balancing partitions. This represents an ad hoc user
provided heuristic approach.

2) Replicating users along with their friends, as proposed
in work on one hop replication by Pujol at el. [4]. This
shows how lookup tables can be used to implement state-
of-the-art partitioning strategies.

3) A load-balanced version of 2 that attempts to make
each partition execute the same number of queries, using
detailed information about the workload. This shows how
lookup tables can support even manually-tuned parti-
tioning strategies. This is identical to what the Schism
automatic partitioner, our previous work, would do [1].

Schemes 2 and 3 ensure that all queries are local while
inserts can be distributed due to replication. The lookup table
contains multiple destination partitions for each user. Scheme
3 extends scheme 2 by applying a greedy load balancing
algorithm to attempt to further balance the partitions.

TPC-E: TPC-E is a synthetic benchmark designed to simulate
the OLTP workload of a stock brokerage firm [10]. It is a
relatively complex benchmark, composed of 12 transaction
types and 33 tables. For the sake of simplicity we extracted
the most telling portion of this benchmark by taking 4 tables
and 4 transactions, and keeping only the data accesses to
these tables. Our subset models customers who each have
a number of accounts. Each account is serviced by a
particular stock broker, that in turn serves accounts from
multiple customers). Each customer makes stock trades
as part of a specific account. Each table has a unique integer
id, along with other attributes. This dataset demonstrates that
lookup tables are applicable to traditional OLTP workloads.
The schema and our lookup table based partitioning strategies
are shown in Fig. 4.

The four operations included in our TPC-E inspired bench-
mark are the following, as summarized in Table II.

Trade Order: A customer places buy or sell orders. This
accesses the account and corresponding customer and
broker records, and inserts a trade.

Trade Result: The market returns the result of a buy or sell
order, by fetching and modifying a trade record, with the
corresponding account, customer, and broker records.

Trade Status: A customer wishes to review the 50 most re-
cent trades for a given account. This also accesses the
corresponding account, customer and broker records.

Customer Position: A customer wishes to review their current
accounts. This accesses all of the customer’s accounts,
and the corresponding customer and broker records.

This simple subset of TPC-E has three interesting char-
acteristics: i) the account table represent a many-to-many
relationship among customers and brokers, and ii) the
trade is accessed both by t id and by aid, and iii) is rather
write-intensive with almost 40% of the transactions inserting
or modifying data.

To partition this application using hashing or ranges, we
partition each table by id, as most of the accesses are via this
attribute. The exception is the trade table, which we partition
by account, so the trades for a given account are co-located.
With ranges, this ends up with excellent locality, as TPC-E
scales by generating chunks of 1000 customers, 5000 accounts,
and 10 brokers as a single unit, with no relations outside this
unit. This locality, however, is mostly a by-product of this
synthetic data generation, and it is not reasonable to expect this
to hold on a real application. As with Twitter, a multi-attribute
partitioning cannot help with this workload. The account table
most commonly accessed account id, but sometimes also by
customer id. Using a multi-attribute partitioning would make
these operations more expensive.

The partitioning using lookup tables for this dataset is
obtained by applying the Schism partitioner [1] and therefore
does not rely on this synthetic locality. The result is a fine-
grained partitioning that requires lookup tables in order to
carefully co-locate customers and brokers. Due to the nature
of the schema (many-to-many relationship) we cannot enforce
location dependencies for every pair of tables. However,
thanks to the flexibility of lookup tables, we can make sure
that the majority of transactions will find all of the tuples they
need in a single partition. Correctness is guaranteed by falling
back to a distributed plan whenever necessary.

The partitioning is shown in Fig. 4: customer and account
are partitioned together by customer id. We also build a lookup
table on account.aid and force the co-location of trades
on that attribute. Brokers are partitioned by bid, and the
partitioner tries to co-locate them with most of their customers.
We also build a lookup table on trade.tid, so that the
queries accessing trades either by aid or tid can be directed
to a single partition. Similarly we add a lookup table on
customer.taxid.

As shown in Table II, the lookup table implementation
avoids broadcasts and two-phase commits, making all transac-
tions execute on a single-partition. This results in much better
scalability, yielding a 2.6x performance increase versus the
best non-lookup table partitioning on our 10 machine experi-
ments (we describe this experiment in detail in Section VI).

Given these examples for how lookup tables can be used,
we now discuss several implementation strategies that allow
us to scale lookup tables to very large datasets.

B. Cost of Distributed Queries

Since the primary benefit of lookup tables is to reduce the
number of distributed queries and transactions, we begin by
examining the cost of distributed queries via a simple synthetic
workload. We created a simple key/value table with 20,000
tuples, composed of an integer primary key and a string of 200
bytes of data. This workload is fits purely in main memory, like
many OLTP and web workloads today. Our workload consists
of auto-commit queries that select a set of 80 tuples using an
id list. This query could represent requesting information for
all of a user’s friends in a social networking application. Each
tuple id is selected with uniform random probability. We scale
the number of backends by dividing the tuples evenly across
each backend, and vary the fraction of distributed queries by

either selecting all 80 tuples from one partition or selecting
80/k tuples from k partitions. When a query accesses multiple
backends, these requests are sent in parallel to all backends.
For this experiment, we used 200 concurrent clients, where
each client sends a single request at a time.

The throughput for this experiment with 1, 4 and 8 backends
as the percentage of distributed queries is increased is shown
in Fig. 6. The baseline throughput for the workload when all
the data is stored in single backend is shown by the solid black
line at the bottom, at 2,161 transactions per second. Ideally,
we would get 8x the throughput of a single machine with
one eighth of the data, which is shown as the dash line at
the top of the figure, at 18,247 transactions per second. Our
implementation gets very close to this ideal, obtaining 94% of
the linear scale-out with 0% distributed queries.

As the percentage of distributed queries increases, the
throughput decreases, approaching the performance for a
single backend. The reason is that for this workload, the
communication overhead for each query is a significant cost.
Thus, the difference between a query with 80 lookups (a single
backend) and a query with 20 lookups (distributed across 8
backends) is very minimal. Thus, if the queries are all local,
we get nearly linear scalability, with 8 machines producing
7.9 the throughput. However, if the queries are distributed,
we get a very poor performance improvement, with 8 machines
only yielding a 1.7 x improvement at 100% distributed queries.
Therefore, it is very important to carefully partition data so
queries go to as few machines as possible.

To better understand the cost of distributed queries, we used
the 4 machine partitioning from the previous experiment, and
varied the number of backends in a distributed transaction.
When generating a distributed transaction, we selected the
tuples from 2, 3 or 4 backends, selected uniformly at random.

The throughput with these configurations is shown in Fig. 7.
This figure shows that reducing the number of participants
in the query improves throughput. Reducing the number of
participants from 4 backends to 2 backends increases the
throughput by 1.38x in the 100% distributed case. However, it
is important to note that there is still a significant cost to these
distributed queries. Even with just 2 participants, the through-
put is a little less than double the one machine throughput.
This shows that distributed transactions still impose a large
penalty, even with few participants. This is because they incur
the additional cost of more messages for two-phase commit. In
this case, the query is read-only, so the two-phase commit only
requires one additional round of messages because we employ
the standard read-only 2PC optimization. However, that means
the 2 participant query requires a total of 4 messages, versus
1 message for the single participant query. These results
imply that multi-attribute partitioning, which can reduce the
participants in a distributed query from all partitions to a
subset (e.g., Vk for a two-attribute partitioning), will improve
performance. However, this is equivalent to moving from the
“4/4 backends” line on Fig. 7 to the “2/4 backends” line. This
improvement is far less than the improvement from avoiding
distributed transactions. Since multi-attribute partitioning will
only provide a modest benefit, and because it is not widely

20,000

10,000

— — — target max for 8 backends|
—+— 8 backends used

—0— 4 backends used

single database

16,000 8,000 [Yhvo

12,000 6,000

&
o
3
3

4,000

requests per second processed

>
o
1S3
3

12000

—O— smart partitioning plus lookup tables
—— hash partitioning

— — ~ target max
—0— 2/4 backends
—¥— 3/4 backends
—0F— 4/4 backends
single database

10000

8000

6000

4000

requests per second processed

2,000

Transactions per second processed

N
=3
S
S

0 20 40 60 80 100 o 20 20
percent of queries that are distributed

Fig. 6. Microbenchmark throughput with vary-
ing fraction of distributed queries

used today, we do not consider it further.

In conclusion, this microbenchmark shows that distributed
queries and distributed transactions are expensive in OLTP
and web workloads, where the cost of network communication
is significant compared to the cost of processing the queries.
Thus, lookup tables can help improve performance by reducing
the number of participants in queries and transactions.

C. Wikipedia

For this experiment, we used the Wikipedia dataset de-
scribed in Section VI-A and partitioned it across 1, 2, 4 and 8
backends. The throughput in this case is shown in Fig. 8, for
both hash partitioning and lookup tables. For lookup tables,
we obtain 5.9x higher throughput with 8 backends. While
this is less than the ideal 8x improvement, the trend on the
graph is still mostly linear, implying that we could improve
the throughput further by adding more backends. Using our
implementation of lookup tables, described in Section VI-A,
each query and transaction goes to a single partition. Thus,
we would expect to see very close to the ideal scalability.
In examining the CPU consumption across each backend,
we observed that it varied across the backends in a very
predictable way, with some servers always very close to 100%,
while others were around 60-70%. The cause is that we are
replaying a trace of web requests as recorded by Wikipedia,
and so the requests are not balanced perfectly across the
partitions over time. Thus, this imbalance means that we are
not able to get perfect scalability.

In this experiment, hash partitioning does not obtain much
improvement. With eight machines, we only get 2x higher
throughput compared to a single database with all data, which
means that lookup tables performs 3 x better than hashing. The
reason for this difference is that with hash partitioning, some
of the queries (those that perform lookups by name) must be
broadcast to all partitions. These queries limit the scalability.
This example shows that in cases where a table is accessed by
more than one attribute, lookup tables can drastically reduce
the number of distributed queries that are required.

D. Twitter

Our Twitter workload provides an example of how lookup
tables can help by clustering many-to-many relationships
together. As described in Section VI-A, we partitioned the
Twitter data into 10 partitions using 1) hash partitioning and 2)
three variants of lookup tables. The three variants are our own
simple heuristic partitioning scheme, one-hop replication [4],

percent of queries that are distributed

Fig. 7. Microbenchmark throughput with vary-
ing distributed query participants

80 100 1 2 3 4 5 6 7 8
number of back-ends holding data

Fig. 8. Wikipedia throughput with varying
backends
Twitter TPC-E
8000 12000
o °
2 2
§ 6000 § 10000
2 2 8000
[} [
o o
@ 4000 2 6000
k=l S
S S 4000
$ 2000 i
] & 2000
= =
0 0

hash lookup lookup lookup
replicated replicated
balanced

single hash range
node

lookup

Fig. 9. Throughput improvement for Twitter and TPC-E datasets

and load-balanced one-hop replication. The throughput for
these four configurations is shown on the left side of Fig. 9.
In this case, our heuristic lookup table partitioning improves
throughput by up to 39%. While this is only a modest
improvement, this is purely due to the reduction in distributed
queries by clustering users and replicating popular users. One-
hop replication, because it makes every query local, improves
the performance by 76% over simple hash partitioning. Fi-
nally, adding our load balancing algorithm yields a 2.24x
improvement over hash partitioning. All of these optimizations
were possible because the lookup tables give us the flexibility
to explore the placement of tuples in different ways, in an
application-specific manner.

E. TPC-E

For TPC-E, we partitioned a portion of the TPC-E bench-
mark across 10 machines as described in Section VI-A. The
throughput for a single machine, hash partitioning, range
partitioning, and lookup tables are shown in the right side
of Fig. 9. Hash partitioning performs worse than a single
database because of a large number of distributed deadlocks.
Our implementation does not perform distributed deadlock
detection, and instead relies on lock requests timing out after
5 seconds. This causes many transactions to stall and then
restart, wasting resources. In this case, the CPUs on all
the backends are mostly idle. The performance of this case
could be improved through better deadlock detection, but this
shows one of the hazards of distributed transactions. Range
partitioning performs significantly better, despite the fact that
it broadcasts the same queries that hash partitioning does. The
reason is that the data accessed by a given transaction for
range partitioning tends to be on a single backend. Thus in this
case, all lock conflicts and deadlocks occur locally, and can be
resolved quickly. Range partitioning across 10 machines yields
a 2.78x throughput improvement over a single machine.

Lookup tables allow most queries and transactions to go to

a single backend, due to their ability to direct queries based
on more than one attribute. Due to this reduction in distributed
queries and transactions, lookup tables provide 7.30x better
throughput than a single machine, and 2.6 x better than range
partitioning. Lookup tables are not able to provide the ideal
10x speedup because the workload still contains occasional
queries that must go to every partition.

VII. RELATED WORK

Lookup tables can be used anywhere that partitioning data
is important. Shared nothing distributed databases, from early
work on R* [11], Gamma [12], and Bubba [2], to modern com-
mercial systems like IBM DB2’s Data Partitioning Feature rely
on data partitioning for scalability. These systems typically
only support hash or range partitioning of the data. However,
even shared disk systems can use partitioning to optimize
locality. Lookup tables can be used with all these systems,
in conjunction with their existing support for partitioning.

In this paper, we argued that one use for lookup tables are
as a type of secondary index for tables that are accessed via
more than one attribute. Many alternatives to this strategy have
been proposed. For example, Bubba proposed what they called
Extended Range Declustering, where a secondary index on the
non-partitioned attributes is created and distributed across the
database nodes [2]. This permits more efficient queries on the
secondary attributes, but still two network round trips: one to
query the secondary index, then one to fetch the actual data.
Our approach simply stores this secondary data in memory
across all query routers, avoiding an additional round trip.
MAGIC declustering is an alternative strategy, where the table
is partitioned in a N-dimensional fashion using N indexed
attributes [3]. This ensures that all queries on the indexed
attributes go to a subset of the nodes, but each subset will
still need to be larger than one. In our approach, we can make
queries via each attribute go to exactly one partition.

Previous work has argued that hard to partition applications
containing many-to-many relationships, such as social net-
works, can be partitioned effectively by allowing tuples to be
placed in partitions based on their relationships. Schism uses
graph partitioning algorithms to derive the partitioning [1],
while SPAR uses an online heuristic to rebalance partitions [4].
The Schism work does not discuss how to use the fine-grained
partitioning it produces (the focus in that paper is on using
classification techniques to transform fine grained partitioning
into range partitions), and SPAR uses a distributed hash table
to lookup up the tuple location, which introduces a network
round-trip. Both these partitioning heuristics could use lookup
tables to distribute queries.

An alternative approach is to force the user to use a schema
and queries that are easily partitionable via a single attribute.
The H-Store system is designed with the assumption that most
OLTP applications are easily partitionable in this fashion [13].
Microsoft’s SQL Azure [14] and Google Megastore [15] both
force applications to execute only single partition transactions,
providing mechanisms to specify how tables are partitioned
together. This design removes the need for lookup tables, but
also constrains how developers can use the database.

VIII. CONCLUSION

We presented lookup tables as a way to provide fine-
grained partitioning for transactional database applications.
Using lookup tables, application developers can implement
any partitioning scheme they desire, and can also create
partition indexes that make it possible to efficiently route
queries to just the partitions they need to access. We presented
a set of techniques to efficiently store and compress lookup
tables, and to manage updates, inserts, and deletes to them.
We used lookup tables to partition three difficult-to-partition
applications: Twitter, TPC-E, and Wikipedia. Each involves
either many-to-many relationships or queries that access data
using different keys (e.g., article ids and titles in Wikipedia.)
On these applications, we showed that lookup tables with
an appropriate partitioning scheme can achieve from 40% to
300% better performance than either hash or range partition-
ing, and shows greater potential for further scale-out.

ACKNOWLEDGEMENTS

This work was supported by Quanta Computer as a part of
the T-Party Project, and by NSF IIS-III Grant 1065219.

REFERENCES

[1] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden, “Schism: a
workload-driven approach to database replication and partitioning.” in
VLDB, Singapore, Sep. 2010.

[2] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin,
B. Hart, M. Smith, and P. Valduriez, “Prototyping Bubba, a highly
parallel database system,” IEEE Trans. on Knowl. and Data Eng., vol. 2,
no. 1, pp. 4-24, 1990.

[3] S. Ghandeharizadeh and D. DeWitt, “MAGIC: a multiattribute declus-
tering mechanism for multiprocessor database machines,” IEEE Trans.
Farallel Distrib. Syst, vol. 5, no. 5, pp. 509 -524, May 1994.

[4] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine(s) that could: scaling online social
networks,” in SIGCOMM, New Delhi, India, Sep. 2010.

[5] G. Graefe, “Query evaluation techniques for large databases,” ACM
Comput. Surv., vol. 25, pp. 73-169, Jun. 1993.

[6] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “Zookeeper: wait-free
coordination for internet-scale systems,” in USENIX, Jun. 2010.

[71 G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload
analysis for decentralized hosting,” Elsevier Computer Networks,
vol. 53, no. 11, pp. 1830-1845, Jul. 2009. [Online]. Available:
http://www.globule.org/publi/WWADH_comnet2009.html

[8] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi, “Measuring
user influence in Twitter: The million follower fallacy,” in International
Conference on Weblogs and Social Media (ICWSM), Washington DC,
USA, May 2010.

[9] N. Kallen, “Big data in real-time at Twitter,” in QCon, San Fran-
cisco, USA, Nov. 2010, http://qconsf.com/dl/qcon-sanfran-2010/slides/
NickKallen_DataArchitecture AtTwitterScale.pdf.

[10] “TPC benchmark E,” Transaction Processing Performance Council,
Tech. Rep., Jun. 2010, version 1.12.0.

[11] C. Mohan, B. Lindsay, and R. Obermarck, “Transaction management in
the R* distributed database management system,” ACM Trans. Database
Syst., vol. 11, no. 4, pp. 378-396, 1986.

[12] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. L.
Hsiao, and R. Rasmussen, “The Gamma database machine project,”
IEEE Trans. on Knowl. and Data Eng., vol. 2, no. 1, pp. 44-62, 1990.

[13] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland, “The end of an architectural era: (it’s time for a complete
rewrite),” in VLDB, Vienna, Austria, Sep. 2007.

[14] P. A. Bernstein, 1. Cseri, N. Dani, N. Ellis, A. Kalhan, G. Kakivaya,
D. B. Lomet, R. Manne, L. Novik, and T. Talius, in /CDE, Apr. 2011.

[15] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J.-
M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” in CIDR,
Monterey, CA, USA, Jan. 2011.

http://www.globule.org/publi/WWADH_comnet2009.html
http://qconsf.com/dl/qcon-sanfran-2010/slides/NickKallen_DataArchitectureAtTwitterScale.pdf
http://qconsf.com/dl/qcon-sanfran-2010/slides/NickKallen_DataArchitectureAtTwitterScale.pdf

