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Abstract

Delay-tolerant networks (DTNs) have the potential to connect devices and areas
of the world that are under-served by traditional networks. The idea is that an
end-to-end connection may never be present. To make communication possible,
intermediate nodes take custody of the data being transferred and forward it as
the opportunity arises. Both links and nodes may be inherently unreliable and
disconnections may be long-lived. A critical challenge for DTNs is determining
routes through the network without ever having an end-to-end connection.

This thesis presents a practical routing protocol that uses only observed in-
formation about the network. Previous approaches either require complete future
knowledge about the connection schedules, or use many copies of each message.
Instead, our protocol uses a metric that estimates the average waiting time for
each potential next hop. This learned topology information is distributed using a
link-state routing protocol, where the link-state packets are flooded using epidemic
routing. The routing is recomputed each time connections are established, allowing
messages to take advantage of unpredictable contacts. Messages are exchanged if
the topology suggests that a connected node is “closer” than the current node.

Simulation results are presented, showing that the protocol provides perfor-
mance similar to that of schemes that have global knowledge of the network topol-
ogy, yet without requiring that knowledge. Further, it requires a significantly less
resources than the epidemic alternative, suggesting that this approach scales better
with the number of messages in the network.
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Chapter 1

Introduction

Wired and wireless networks have enabled a wide range of devices to be intercon-
nected over vast distances. For example, today it is possible to connect from a
cell phone to millions of powerful servers around the world. As successful as these
networks have been, they still cannot reach everywhere, and for some applications
their cost is prohibitive. The reason for these limitations is that current network-
ing technology relies on a set of fundamental assumptions that are not true in
all environments. The first and most important assumption is that an end-to-end
connection exists from the source to the destination, possibly via multiple interme-
diaries. This assumption can be easily violated due to mobility, power saving, or
unreliable networks. For example, if a wireless device is out of range of the network
(e.g. the nearest cell tower, 802.11 base station, etc.), it cannot use any applica-
tion that requires network communication. Delay-tolerant networking (DTN) is
an attempt to extend the reach of networks. It promises to enable communica-
tion between “challenged” networks, which includes deep space networks, sensor
networks, mobile ad-hoc networks, and low-cost networks. The core idea is that
communication can be enabled between these networks if protocols are designed to
accommodate disconnection [9].

As an example of where these networks are useful, consider a classroom where
each student has a laptop, but there is no network infrastructure. One would like
the students to collaborate on projects using the wireless network cards in the
laptops, and also to communicate with the Internet. Delay-tolerant networking can
make this happen, as illustrated in Figure 1.1. The laptops communicate with each
other to exchange data. If the destination laptop is not present, which may occur if
the student has gone home, the network stores the messages until they return. To
communicate with the Internet, the school could be serviced via a router attached
to a bus traveling between the school and an Internet gateway. This device picks up

1
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Ad-hoc DTN Internet GatewayMobile Device

Figure 1.1: Laptops communicating with each other and the Internet via delay-
tolerant networking

requests from the school and delivers them to the gateway, and then provides the
responses on its next trip. First Mile Solutions sells a system called DakNet that
is based on this idea [17], while the Wizzy Digital Courier Project uses a simple
one-hop delay-tolerant network to provide Internet access to rural South African
schools [37].

There are many other applications for delay-tolerant networks. In developing
regions, applications range from education to health care to government services [2].
In developed nations, researchers have proposed augmenting low bandwidth Inter-
net connections with a high-bandwidth delay-tolerant network built by sending
physical media, such as DVDs, through the postal system [48]. This allows very
large files to be quickly and cheaply exchanged while small files and control messages
are exchanged over a low bandwidth link. Others have investigated using DTNs
to provide Internet access to cars, by connecting temporarily to roadside wireless
base stations [35]. DTNs could also be used to gather data from everything ranging
from sensors in oceans [40], to satellites in space [4].

1.1 The Routing Problem

One of the fundamental problems that arises when designing networks that handle
disconnection is routing. Before a network can be usable, it must be possible
to get data from the source to the destination. Simple DTN-like networks have
been built using static routing [17, 37], which is an effective approach for small
networks. However, the benefit will increase if the networks can be scaled to service
larger areas. To achieve this goal, routing protocols are needed to automate the
configuration, and to cope with changes and failures.

This thesis presents a routing protocol designed to be easy to deploy. To do
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so, it must meet three design goals. First, the routing must be self-configuring.
This is critical for equipment that may be deployed far from network experts,
and to maintain communication capability even when some components fail. Many
application domains where DTNs can provide significant benefits have both of those
problems. Second, the protocol must provide acceptable performance over a wide
variety of connectivity patterns. This implies that the protocol will be a good
choice for most DTN scenarios. This eliminates the need to perform any analysis
to determine which protocol to use. Finally, the protocol must make efficient use
of buffer and network resources. If the DTN becomes a valuable resource, it will
be used frequently by a large number of users. Thus, it must be capable of scaling
with the demand.

1.2 Contributions

This thesis presents a technique for shortest path routing in delay-tolerant networks.
The main contributions of this work are as follows:

1. A routing protocol that can be deployed in delay-tolerant networks that does
not require configuration. This provides a useful and efficient tool for building
DTNs.

2. A metric for estimating the cost of available paths that relies strictly on
observed information. This metric is sufficiently generic to be used by any
routing protocol.

3. Techniques for improving the performance of shortest path routing protocols.
Our results show that making routing decisions as late as possible provides
resilience to resource shortfalls, and to path selection errors. We also show
that hop-by-hop flow control can improve the performance when there is
limited buffer space.

4. Strategies for injecting multiple copies of each message into the network, along
disjoint paths, in order to increase the delivery ratio and decrease delay. We
present techniques that use replication and retransmissions. These techniques
provide a tunable resource consumption/performance trade-off.

1.3 Thesis Organization

In Chapter 2 we describe our model of DTNs, the important metrics used to evaluate
performance in these networks, and the previous approaches to solving the routing



CHAPTER 1. INTRODUCTION 4

problem. We describe the design and operation of our practical routing protocol
in Chapter 3, and evaluate its performance via extensive simulations in Chapter 4.
Chapter 5 discusses techniques for further improving the performance of the basic
protocol. Finally, our conclusions and future work are presented in Chapter 6.



Chapter 2

Background

Since routing is a fundamental problem that must be solved before a network
can be used, there has been extensive research on this issue in DTNs. The re-
search dates back to before the term “delay-tolerant” was widely used. The ad-
jectives “intermittently-connected,” “disruption-tolerant”, “sparse,” and “discon-
nected” are also used to describe networks without constant end-to-end connec-
tions. This chapter presents two properties that can be used to classify delay-
tolerant routing strategies: replication and knowledge. Replication describes how a
routing strategy relies on multiple copies of each message, and knowledge describes
how information about the network is used to make decisions.

Before discussing the details of DTN routing, we first discuss the important
properties of DTNs and the metrics used to evaluate each routing technique. Next,
we present a system for classifying each strategy based on the two properties. We
divide the routing strategies into two broad families, flooding and forwarding, based
on their use of replication and knowledge. We analyze each family, and show how
prior research fits into the classification scheme.

2.1 Network Characteristics

In order to discuss the routing problem, we need a model that describes the network.
A DTN is composed of computing systems participating in the network, called
nodes. One-way links connect some nodes together. These links may go up and
down over time, due to mobility, failures, or other events. When the link is up,
the source node has an opportunity to send data to the other end. In the DTN
literature this opportunity is called a contact [9]. More than one contact may be
available between a given pair of nodes. For example, a node might have both a

5
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high-performance, expensive connection and a low-performance, cheap connection
that are available simultaneously for communication with the same destination.
The contact schedule is the set of times when the contact will be available. In graph
theory, this model is a time-varying multigraph. The DTN architecture proposes to
use this network by forwarding complete messages over each hop. These messages
will be buffered at each intermediate node, potentially on non-volatile storage. This
enables messages to wait until the next hop is available, which may be a long period
of time.

As described by Jain et al., the amount of time for a message to be transferred
from one node to another can be divided into four components: waiting time,
queuing time, transmission delay, and propagation delay [21]. The waiting time is
the amount of time a message must wait between when it arrives at a node and
when the contact to the next node becomes available. This depends on the contact
schedule and the message arrival time. The queuing time is the time it takes to
drain the queue of higher priority messages. This depends on the contact data rate
and the competing traffic in the network. The transmission delay is the time it
takes for all the bits of the message to be transmitted, which can be computed
from the contact’s data rate and the message length. The propagation delay is the
time it takes a bit to propagate across the connection, which depends on the link
technology.

2.1.1 Challenges

Delay-tolerant networks present many challenges that are not present in traditional
networks. Many stem from the need to deal with disconnections, which directly
impacts routing and forwarding. However, because these networks enable commu-
nication between a wide range of devices, there are secondary problems that routing
strategies may need to be aware of, such as dealing with limited resources.

Contact Schedules

Of the four inter-node delay components, the most significant is likely to be the
waiting time, since it might range anywhere from seconds to days whereas the
others are typically much shorter. Thus, one of the most important characteristics
of a DTN is the contact schedule, which depends strongly on the application area
under consideration. Contact schedules can be placed on an approximate spectrum
based on how predictable they are, as shown in Figure 2.1. At one extreme we
have contact schedules that are very precise. An example would be deep space
networks, where disconnections are caused by movements of objects in space that
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Figure 2.1: A spectrum of contact schedule predictability

can be calculated very accurately. One step less predictable would be scheduled
networks with errors. For example, consider a DTN where the nodes are mounted
on city buses. These buses have a schedule, but it is not precise. Due to traffic,
equipment failures, or accidents, the actual arrival times can vary significantly,
as anyone who regularly takes public transit can attest. Many human activities
have implicit schedules, such as work. There is no guarantee when a person will
be at work, but their schedule is fairly regular. Finally, at the other end of the
spectrum are networks with completely random connectivity. These networks are
widely studied in the ad-hoc networking community because the models are simple
to work with. This spectrum is similar to the one presented in [30].

Some work on DTN routing has investigated networks with proactive mobility,
where the nodes actively move in response to communication needs [30, 28, 51, 52].
In our model, this can be represented as contacts that can be selectively brought up
or down. Networks with this type of mobility fall somewhere in the middle of the
spectrum because some contacts are unpredictable, but the controlled contacts are
predictable. The routing techniques discussed in this paper are equally applicable
to networks with proactive mobility. However, these networks also require some
type of cost/benefit optimization to make decisions about proactive movement,
which is outside the scope of this chapter.

Contact Capacity

A question that is closely related to the contact schedule is how much data that
can be exchanged between two nodes. This depends on both the link technology
and the duration of the contact. Even if the duration is precisely known, it may
not be possible to predict the capacity due to fluctuations in the data rate. At
a first glance, it might appear that this is a simple issue for routing strategies to
deal with. A naive approach would be to ignore the contact capacity, except in
cases where the message is simply too large to be sent across the contact without
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fragmentation. If the volume of traffic is very small compared to the capacity of
contacts in the network, then this is a reasonable approach. However, if the volume
of traffic increases due to a large number of users, or due to large messages being
exchanged, the contact capacity becomes very important. In this situation, the
best contact could become one that is “inefficient” according to other criteria, but
has the largest contact volume and thus is best equipped to handle large traffic
demands.

Although there are studies of real world contact duration and capacity [3, 18],
few of the routing strategies surveyed attempt to use this information. One excep-
tion is the EDLQ and EDAQ schemes proposed by Jain et al., which compute the
delay caused by waiting for competing traffic, then route messages on the paths
with the smallest delay [21].

Buffer Space

In order to cope with long disconnections, messages must be buffered for long
periods of time. This means that intermediate routers require enough buffer space
to store all the messages that are waiting for future communication opportunities.
From one point of view, this means that intermediate routers require buffer space
proportional to demand. An alternate point of view is that routing strategies might
need to consider the available buffer space when making decisions. In the studies
surveyed here, all nodes have an equal amount of buffer space and the strategies
do not make decisions based on this resource.

Processing Power

One of the goals of delay-tolerant networking is to connect devices that are not
served by traditional networks. These devices may be very small, and similarly
have small processing capability, in terms of CPU and memory. These nodes will
not be capable of running complex routing protocols. The strategies presented
in this paper are not designed for extremely small sensors. However, research in
routing for wireless sensor networks has extensively investigated this issue [1]. The
routing strategies presented here could still be used on more powerful gateway
nodes, in order to connect the sensor network to a general purpose delay-tolerant
network.

Energy

Some nodes in delay-tolerant networks may have limited energy supplies either
because they are mobile, or because they are in a location that cannot easily be
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connected to the power grid. Routing consumes energy by sending, receiving and
storing messages, and by performing computation. Hence, routing strategies that
send fewer bytes and perform less computation will be more energy efficient. Addi-
tionally, routing strategies can optimize power consumption by using energy-limited
nodes sparingly. While researchers have investigated general techniques for saving
power in delay-tolerant networks [24], none of the routing strategies surveyed has
incorporated power-aware optimizations. Thus, we will not discuss this topic fur-
ther.

2.1.2 Evaluation Criteria

In order to compare routing strategies, we must define some metrics for evaluating
their performance. Since the exact numbers for the metrics depend on many factors,
we will only discuss them in relative terms.

Delivery Ratio

In a delay-tolerant network, the most important network performance metric is
the delivery ratio. However, in DTNs, a message is rarely actually “lost.” Rather,
the network was unable to deliver messages within an acceptable amount of time.
Thus, we define the delivery ratio as the fraction of generated messages that are
correctly delivered to the final destination within a given time period.

Latency

A secondary metric is the latency, the time between when a message is generated
and when it is received. This metric is important since many applications can
benefit from a short delivery latency, even though they will tolerate long waits.
Many applications also have some time window where the data is useful. For
example, if a DTN is used to deliver e-mail to a mobile user, the messages must be
delivered before the user moves out of the network.

Transmissions

Some routing strategies transmit more messages than others, either because they
use multiple copies of each message, make different decisions about the next hop,
or because of protocol overhead. The number of transmissions is a measure of the
amount of contact capacity consumed by a protocol. It is also an approximate mea-
sure of the computational resources required, as there is some processing required
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Figure 2.2: Example DTN scenario

for each message. Additionally, each transmission consumes energy, so it is also an
approximate measure of power consumption.

2.1.3 Example

We will use the scenario shown in Figure 2.2 throughout this chapter to illustrate
the routing strategies. There are six nodes labeled A through F. The contacts go
up and down one at a time, in the sequence shown by the labels on each line. All
links are bidirectional, and messages are always generated by node A.

2.2 Strategy Properties

We categorize delay-tolerant routing strategies using two properties. The first prop-
erty, replication, denotes how the strategy uses multiple copies of a message, and
how it chooses to make those copies. The second property, knowledge, indicates
how the strategy uses information about the state of the network in order to make
routing decisions, and also how it obtains that information.

2.2.1 Replication

Delay-tolerant networks may rely on components that are unreliable or unpre-
dictable. To compensate for this, many routing strategies make multiple copies
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of each message, in order to increase the chance that at least one copy will be
delivered, or to reduce delivery latency. The intuition is that having more copies
of the message increases the probability that one of them will find its way to the
destination, and decreases the average time for one to be delivered. This is a clear
trade-off between cost and performance. The cheapest approach is to have a single
copy of the message. However, a single failure will result in the message being lost.
The most reliable approach is to have each node carry a copy of the message. In
this case, the message is lost only if all the nodes in carrying it are unable to deliver
it. However, this consumes bandwidth and storage resources proportional to the
number of nodes in the network.

A related issue is characterizing the best approach to making replicas. Jain et al.
present a theoretical approach to determine which set of paths to use, provided
that the path failure probabilities are known and independent [20]. Erasure coding
and networking coding schemes have also been investigated to attempt to keep
the benefit of multiple copies while reducing the resource costs [49, 50]. These
techniques appear promising, and it should be possible to integrate them with the
routing strategies presented here.

2.2.2 Knowledge

Some routing strategies require more information about the network than others.
At one extreme, a node can make decisions with zero knowledge about the network,
except which contacts are currently available. These strategies use static rules
that are configured when the strategy is designed, and every node obeys the same
rules. This leads to simple implementations that require minimal configuration and
control messages, since all the rules are hard-coded ahead of time. The disadvantage
is that the strategy cannot adapt to different networks or conditions, so it may not
make optimal decisions. At the other end of the spectrum, a node might need to
know the complete future schedule of every contact in the network. Provided that
the information is accurate, this allows routing strategies to make very efficient use
of network resources by forwarding a message along the best path. There is a range
of values in between these two extremes. For example, approximate information
about the future contact schedules might be available. Or, a strategy might require
no information in advance, but instead will learn it automatically.
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2.3 Strategy Families

We divide DTN routing strategies into two families based on which property a
strategy uses in order to find the destination. Like all classification schemes, there
are some cases that do not fall cleanly into either group, but we attempt to select
the primary technique that a strategy uses. The families are flooding strategies,
which rely primarily on replicating messages to enough nodes so the destination
receives it, and forwarding strategies, which rely on knowledge about the network
to select the best path to the destination. We first describe each family in general,
and then describe specific examples in each family.

2.3.1 Flooding Strategies

Strategies in the flooding family deliver multiple copies of each message to a set
of nodes, called relays. The relays store the messages until they connect with the
destination, at which point the message is delivered. The earliest work in the area
of DTN routing fall into this family. Many of them date before the term “delay-
tolerant” became popular. Traditionally, these strategies have been studied in
the context of mobile ad-hoc networks, where random mobility has a good chance
of bringing the source into contact with the destination. Message replication is
then used to increase the probability that the message gets delivered. The basic
protocols in this family do not need any information about the network, however
more advanced schemes use some knowledge to improve performance.

Direct Contact

This strategy waits until the source comes into contact with the destination before
forwarding the data. This is the degenerate case of the flooding family, where the set
of relays contains only the destination. It can also be considered a degenerate case
of the forwarding family, where it always selects the direct path between the source
and the destination. However, since this strategy does not require any information
about the network and only uses a single hop, we will consider it to be a flooding
strategy. Due to its simplicity, it does not consume many resources, and it uses
exactly one message transmission. However, it only works if the source contacts
the destination. The Infostation architecture proposed using direct contact delivery
between mobile nodes and fixed gateways as a technique for increasing wireless
network throughput and decreasing cost [11]. Grossglauser and Tse showed that in
their mobile ad-hoc network scenario, this strategy has a capacity that approaches
zero as the number of nodes increases [13].
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Figure 2.3: Direct Contact routing example

In the example scenario, node A can only deliver messages to nodes B and D,
as shown in Figure 2.3. Additionally, it is faster for node A to deliver a message to
node D via the path A-B-C-D, which it cannot do.

Two-Hop Relay

In this strategy, the source copies the message to the first n nodes that it contacts.
The source and the relays hold the message and deliver it to the destination. Since
there are now n + 1 copies of the message in the network, more bandwidth and
storage are consumed. However, the resource consumption is limited and can be
tuned by adjusting the number of copies. This strategy has a much better chance
of delivering the message than the Direct Contact strategy. If we assume that each
node contacts the destination with an independent probability p, then this strategy
will deliver each message with probability 1− (1− p)(n+1), which is approximately
(n + 1)p if p is very small. Similarly, increasing the number of copies decreases the
average latency, since the message is delivered as soon as any of the n + 1 nodes
contacts the destination. This strategy has the same fundamental limitation as
Direct Contact: If the n + 1 nodes never reach the destination, the message cannot
be delivered. In scenarios where the mobility is random, this might be rare, but in
networks with structured connectivity this could be very common.

In the example, if node A has a message for node E, it would send copies to
both nodes B and D, as shown in Figure 2.4. When node B connects with node
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Figure 2.4: Two-hop relay example

C, it would not send it the message, since node C is not the destination. Finally,
the message would be delivered at time 7 when node B connects with node E. At
the end, nodes A, B, D and E have all received the message. Node A can reach all
other nodes via two-hop relay except node F, since it is a minimum of three hops
away.

Grossglauser and Tse showed that this strategy can be used to increase the
capacity of mobile ad-hoc networks under ideal conditions [13]. This approach has
also been studied as a routing strategy for sensor networks [39], and for scenarios
with proactive mobility [51]. It has been proposed as a fall-back when ad-hoc
routing cannot find a connected path [33].

Tree-Based Flooding

Tree-Based Flooding strategies extend two-hop relay by distributing the task of
making copies to other nodes. When a message is copied to a relay, there an
indication of how many copies the relay should make. This is called Tree-Based
Flooding because the set of relays forms a tree of nodes rooted at the source. Two-
hop relay can be viewed as Tree-Based Flooding with a depth of one.

There are many ways to decide how to make copies. A simple scheme is to
allow each node to make unlimited copies, but to restrict the message to travel a
maximum of n hops from the source [47]. This limits the depth of the tree, but
places no limit on its breadth. A refinement is to also limit the node to make at
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Figure 2.5: Tree-Based Flooding Example

most m copies [41]. This limits both the depth and the breadth of the tree, which
limits the total number of copies to a maximum of

∑n
i=0 mn. A more complex

alternative is to limit the total number of copies to N . When a node makes a copy,
it distributes the responsibility for making half of its current copies to the other
node, and keeps half for itself [41, 43]. This scheme has been shown to be optimal if
the inter-node contact probabilities are independent and identically distributed [43].

Tree-Based Flooding can deliver messages to destinations that are multiple hops
away, unlike Direct Contact or Two-Hop Relay. However, tuning the parameters
can be a challenge. If they are too conservative, many extra copies will be made.
Conversely, if they are too aggressive, then the message may not propagate to the
destination. Consider the example scenario if node A has a message for node E,
and it can make a maximum of four additional copies. At time 1, it sends a copy to
node B along with directions to make one copy (b(4− 1)/2c), shown in Figure 2.5.
Node A keeps two copies for itself (d(4− 1)/2e). At time 2 when node B connects
with node C, B’s additional copy is delivered. At time 3, node C connects to node
D. However, it cannot send D a copy because it has no copies to distribute. At
time 4, C delivers the message to the E. At time 6, A sends D a copy, since it does
not know that the message was already delivered. At this point, node A has one
remaining copy that it will deliver if it contacts another node.
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Figure 2.6: Epidemic Routing Example

Epidemic Routing

Epidemic algorithms were originally proposed for synchronizing replicated databases [8].
Vahdat and Becker applied these algorithms to forwarding data in a DTN [47]. In
effect, the queue of messages waiting to be delivered is the database that needs to
be synchronized. Epidemic algorithms guarantee that provided a sufficient number
of random exchanges of data, all nodes will eventually receive all messages. Thus,
the destination node is guaranteed to have received the data. Epidemic Routing
works as follows. When a message is sent, it is placed in the local buffer and tagged
with a unique ID. When two nodes connect, they send each other the list of all
the messages IDs they have in their buffers, called the summary vector. Using the
summary vector, the nodes exchange the messages they do not have. When this
operation completes, the nodes have the same messages in their buffers.

Epidemic Routing represents the extreme end of the flooding family because
it tries to send each message over all paths in the network. This provides a large
amount of redundancy since all nodes receive every message, making this strategy
extremely robust to node and network failures. Additionally, since it tries every
path, it delivers each message in the minimum amount of time if there are sufficient
resources. In the example, the message will be delivered from A to E via the fastest
path (A-B-C-E), as shown in Figure 2.6. All nodes will receive the message except
node F because node E does not replicate messages that are destined for itself.

Epidemic Routing is relatively simple because it requires no knowledge about
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the network. For that reason, it has been proposed to use it as a fall-back when
no better method is available [14]. The disadvantage is that a huge amount of
resources are consumed due to the large number of copies. This requires large
amount of buffer space, bandwidth, and power.

Many papers have studied ways to make Epidemic Routing consume fewer re-
sources [30, 3, 41, 7, 29, 44, 16, 15]. One of the problems is that the message
continues to propagate through the network, even after it has been delivered. The
original epidemic algorithms paper proposed “death certificates” to solve this prob-
lem [8]. The idea is that a new message is propagated informing nodes to delete
the original message and to not request it again. Ideally, the death certificate will
be much smaller than the original message, so overall the resource consumption is
reduced. Researchers have explored various schemes for tuning how aggressively
the death certificates are propagated. Small and Haas show that the more aggres-
sive the death certificate propagation, the less storage is required at each node [41],
while Harras and Almeroth show that the more aggressive strategies transmit more
messages [15].

A critical resource in epidemic routing is the buffer. An intelligent buffer man-
agement scheme can improve the delivery ratio over the simple FIFO scheme [7].
The best buffer policy evaluated is to drop packets that are the least likely to be
delivered based on previous history. If node A has met B frequently, and B has met
C frequently, then A is likely to deliver messages to C through B. Similar metrics
are used in a number of epidemic protocol variants [30, 3, 7, 29, 44]. This approach
takes advantage of physical locality and the fact that movement is not completely
random. While these protocols are more efficient than the original Epidemic routing
protocol, they still transmit many copies of each message.

2.3.2 Forwarding Strategies

The strategies in this family take a more traditional approach to routing data in
a DTN. They use network topology information to select the best path, and the
message is then forwarded from node to node along this path. A path can be found
using location-based routing, assigning metrics to nodes or by assigning metrics
to links. Some of these approaches have been explored in wired and multi-hop
wireless networks. However, the protocols designed for these environments will
not function in delay-tolerant networks, since they assume that links are usually
connected. By definition, the strategies in this family require some knowledge about
the network. They typically send a single message along the best path, so they do
not use replication.
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Location-Based Routing

The forwarding approach that requires the least information about the network is
to assign coordinates to each node. A distance function is used to estimate the
cost of delivering messages from one node to another. The coordinates can have
physical meaning, such as GPS coordinates, as has been studied for mobile ad-
hoc networks [31]. Alternatively, the coordinates can have meaning in the network
topology space, instead of physical space, which has been used to estimate network
latency between arbitrary nodes on the Internet [34]. In general, a message is
forwarded to a potential next hop if that node is closer in the coordinate space
than the current custodian.

The advantage of location-based routing is that it requires very little information
about the network, eliminating the need for routing tables and reducing the control
overhead. In order to determine the best path, a node only needs to know its own
coordinates, the coordinates of destination, and the coordinates of the potential
next hops. Given these three pieces of information, a node can easily compute the
distance function and determine where the message should be sent.

Location-based routing has two well known problems. The first problem is that
even if the distance between two nodes is small, there is no guarantee that they will
be able to communicate. In the case of physical coordinates, consider two wireless
nodes on opposite sides of a wall that blocks all radio signals, as shown in Figure 2.7.
Node A wants to send a message to D. It has two potential next hops: nodes B and
C. Since node B is the closest to node D, it forwards the message to B. However,
B cannot communicate with D due to the obstruction, whereas node C has a line
of sight. The problem is that location does not necessarily correspond to network
topology. This problem is somewhat alleviated by using virtual coordinates, since
they are designed to closely represent the network topology. However, it is still
possible that the message can fall into a local minimum and not reach the desti-
nation. In mobile ad-hoc networks, protocols have been explored which attempt
to route around obstructions like this [25]. The second problem is that a node’s
coordinates can change. If a node moves, its physical coordinates change. If the
network topology changes, a node’s virtual coordinates change. This complicates
routing because the source needs the coordinates of the destination node. These
two problems mean that implementing location-based routing is not as simple as it
appears.

Lebrun et al. proposed using the motion vector of mobile nodes to predict their
future location. Their scheme passes messages to nodes that are moving closer to
the destination [26], which results in a better delivery ratio than two-hop relay with
less overhead than Epidemic routing. Leguay et al. presented a virtual coordinate
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routing strategy called mobility pattern spaces [27]. In their strategy, the node
coordinates are composed of a set of probabilities, each representing the chance
that a node will be found in a specific location. Various distance functions are
then computed on this vector. Their results show that this approach reduces the
amount of resources consumed when compared with Epidemic Routing, while still
delivering a substantial fraction of the messages. Neither of these works address
the local minima or changing coordinates problems. However, they do show that
these techniques are applicable to DTNs.

Gradient Routing

An alternate approach is to assign a weight to each node that represents its suitabil-
ity to deliver messages to a given destination. When the custodian of a message
contacts another node that has a better metric for the message’s destination, it
passes the message to it. This approach is called gradient routing because the
message follows a gradient of improving utility function values to-wards the desti-
nation. The idea was first applied to ad-hoc networks in 2000 [36]. This requires
more network knowledge than location-based routing for two reasons. First, each
node must store a metric for all potential destinations. Second, sufficient informa-
tion must be propagated through the network to allow each node to compute its
metric for all destinations. The metric could be based on many parameters, such as
the time of last contact between the node and the destination, remaining battery
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energy, or mobility. An extremely simple utility function is to forward a packet
with a certain probability. This approach does not seem practical, but it has been
used as a baseline for comparison with more advanced techniques [42, 21].

Gradient Routing has been shown to decrease the delay when compared to direct
contact [42]. Similar schemes have been proposed for routing data to-wards base
stations in sensor networks. For example, the history-based protocol presented for
ZebraNet is a gradient routing strategy [23]. A theoretical analysis of gradient
routing can be found in [42], and a discussion about predicting utility function
values can be found in [32].

One of the shortcomings of gradient routing is that it can initially take a long
time for a good custodian to be found, since it may take some time for the utility
function values to propagate, or because the metric values in the region around the
initial custodian are all equally poor. One approach that has been shown to reduce
the delivery latency is to initially use random forwarding until the utility value
reaches a certain threshold [42]. This hybrid approach initially allows a message
to actively explore the network until it finds a good carrier, and then it uses the
standard utility routing to efficiently reach the destination. Burgess et al. use a
similar technique to quickly propagate a new message in their epidemic routing
variant [3].

Link Metrics

Routing strategies that use link metrics resemble traditional network routing pro-
tocols. They build a topology graph, assign weights to each link and finally run a
shortest path algorithm to find the best paths. This requires the most network in-
formation as each node must have sufficient knowledge to run a routing algorithm.
Link weights are assigned to try and provide optimal service to the endpoints, based
on some performance metric: the highest bandwidth, lowest latency, and the high-
est delivery ratio. In delay-tolerant networks, the most important metric is the
delivery ratio, since the network must be able to reliably deliver data. A secondary
metric is the delivery latency. Thus, the challenge is to determine a system for
assigning link metrics that maximizes the delivery ratio and minimizes the delivery
latency. Some metrics may also attempt to minimize resource consumption, such
as buffer space or power.

The first paper that proposed using link metrics for routing in delay-tolerant
networks suggests that an appropriate metric is to minimize the end-to-end delivery
latency [21]. The intuition is that this minimizes the amount of time that a message
consumes buffer space, and thus it should also maximize the delivery ratio since
there is more space available for other messages. Their work uses a metric that is the
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time it will take for a message to be sent over each link. Since this value may depend
on the time a message arrives at a node, the authors present a time-varying version
of Dijkstra’s shortest path algorithm. Finding the path that delivers the message
with the shortest delay has also been used for proactive mobile networks [28].

Jain et al. present a variety of different metrics for networks with precise sched-
ules, each of which require different amounts of information. However, all of the
metrics assume that the contact schedule is precise. The first metric, called Min-
imum Expected Delay (MED), is the metric that requires the least amount of
information. It assumes that the queuing time is zero, and that the average of the
sum of transmission time, propagation delay, and waiting time is known precisely.
This value is the expected delay: the average amount of time it takes for a message
to go from one node to another, assuming that all arrival times are equally likely.
The next metric is Earliest Delivery (ED). The queuing delay is assumed to be zero,
and the propagation and transmission delays are assumed to be known precisely.
The path is selected that will get the message to the destination at the earliest
time. This requires the complete contact schedule, whereas MED only requires
the average value of the waiting time. The next metric is Earliest Delivery with
Local Queuing (EDLQ), which uses the buffer occupancy at each node to add an
estimate of the queuing delay to the ED metric. Finally, the Earliest Delivery with
All Queues (EDAQ) uses the information about the traffic demands for all nodes
in order to compute the exact queuing delay. This paper shows that the protocols
with more information have higher delivery ratios and lower delay. However, for
some scenarios the difference between them is small.

2.4 Observations

If we plot the approximate location of each of the routing strategies discussed here
using the Replication and Knowledge properties, as shown in Figure 2.8, we can
see that the edges along the two axes are very well explored, but the middle space
is not. The middle represents strategies that take advantage of both Replication
and Knowledge in order to improve the delivery ratio and decrease the delivery
latency. In particular, the area represented by the lower left-hand corner, that
uses a small amount of both Replication and Knowledge, is likely to yield routing
strategies that can be applied in the real world, as they will not require precise
schedules or substantial amounts of configuration, nor will they consume large
amount of resources by flooding the network with duplicate messages. The variants
of Epidemic Routing that take advantage of some learned topology information are
a good first step in this direction. In this thesis, we attempt to address the area
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indicated by the shaded ellipse. This region represents protocols that use learned
knowledge about the network, and use small amounts of replication. An early
version of this work was presented at the SIGCOMM DTN Workshop, 2005 [22].



Chapter 3

Protocol Design

This chapter presents a shortest path routing protocol for delay-tolerant networks.
Its design is based on routing in traditional networks, but some design decisions
were modified for this new environment. First we discuss some of the issues in
selecting a path metric and present the metric we use. Next we investigate when
to make routing decisions, and finally how to distribute topology information.

3.1 Path Metrics For DTNs

Paths must be carefully selected to extract the best performance from a network.
In a DTN, the primary requirement is that messages are reliably delivered. Thus,
delivery ratio is a very important metric. Unfortunately, it is not clear how a metric
can be constructed to directly maximize delivery ratio along a path. To resolve this
problem, we follow the same approach as Jain et al. and choose to minimize the
end-to-end delay [21]. This reduces the amount of time a message occupies buffers
in the network, which intuitively should reduce the number of messages dropped,
assuming that buffer overflow is the primary cause of loss. Additionally, previous
work in the distributed systems community has shown that it is not possible to
implement many important algorithms, such as consensus, election, or membership,
using networks that provide an asynchronous, time-free model [10]. However, it is
possible to implement them using an asynchronous timed mode [5]. Thus, it seems
useful to strive for timely delivery of messages.

In a delay-tolerant network, the end-to-end delay has four components. First,
the message must wait for the next contact to arrive (waiting time). Next, the
data queued ahead of the current message must be delivered (queuing delay). The
message must then be transmitted (transmission delay), and finally the signal must

23
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propagate to the next hop (latency). Delay is an attractive metric because these four
factors can be combined into a single number, assuming that sufficient information
is available. However, to simplify the discussion in this paper, we assume that links
have a very high throughput and low latency, which means that the waiting time
is the only significant factor.

A variety of metrics for minimizing the end-to-end delay in a DTN have been
explored by Jain et al. [21]. However, most of them require knowledge of future
contact arrival times. An exception is the Minimum Expected Delay (MED). This
metric assigns a cost to each edge equal to the average waiting time plus the trans-
mission delay. Once this value is computed, the contact schedule is not needed.
Assuming that message arrival times are uniformly distributed, the waiting time
probability distribution is a piecewise linear function. It is a straightforward appli-
cation of basic probability to compute the expected value. The derivation of the
metric is included in the AppendixA.

We propose a variant of MED we call the Minimum Estimated Expected Delay
(MEED). Instead of computing the expected waiting time using the known contact
schedule, MEED uses the observed contact history. This assumes that the future
connectivity will be similar to the previously observed connectivity. The details of
this metric are reviewed in Section 3.6.

3.2 Routing Decision Time

The earliest opportunity that the path for a message can be decided is at the source,
which is called source routing. This is a simple approach but it is inappropriate
for our protocol because as the message travels closer to the destination, the nodes
will likely have more recent and accurate information about the destination’s con-
nectivity. Hence it seems natural that these intermediate nodes can make better
decisions than the source.

The next time to make forwarding decisions is when a message arrives at an
intermediate node, which is called per-hop routing. When the message arrives, the
node determines the next hop for the destination and places it in a queue for that
contact. This is also not a good solution for DTNs, as changes to the topology
could occur after the message arrives. This would result in the message waiting to
be forwarded over a sub-optimal link.

In order to make routing decisions with the best possible information, we use
what we call per-contact routing. Instead of computing the next hop for a message
in advance, the routing table is recomputed each time a contact arrives. After a
new routing table has been computed, we examine each message in the buffer to
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determine if any of them need to be forwarded over any of the available contacts.
This assures that each routing decision is made with the most recent information.
The disadvantage is that this approach uses more processing resources, as the rout-
ing is recomputed frequently. Additionally, the routing must be recomputed before
any messages may be forwarded. Thus, there may be some additional delay before
a link will be used. As long as the processing power of the nodes is appropriate
for the size of the network, this delay will not be significant. However, it may be a
limiting factor in scaling this approach to very large networks.

Since we are recomputing the routing table each time a contact becomes avail-
able, we can improve the performance further by temporarily assigning the contact
a cost of zero in our local routing table. This value is used when computing the
routing table, but is not propagated to other nodes. This “short circuits” the rout-
ing decisions made by the link-state protocol, allowing messages to take advantage
of good timing. This is similar to the approach used in some epidemic routing vari-
ants [7, 44], and to what Handorean et al. call a “path update” [14]. Per-contact
routing combined with short circuiting is effective for delay-tolerant networks be-
cause it guarantees that decisions are always made with the most recent information
possible, and it can take advantage of serendipitous contact arrivals to make the
routing more efficient.

For example, imagine we have a network with four nodes. Node A has a message
for node D. There are two possible next hops: B with a total path cost of 5, and
C with a total path cost of 10. This topology is shown in Figure 3.1(a). Thus,
the current routing state says the message should wait for B to reach D. However,
node C connects first. Thus, the cost to go from A to C becomes zero, as shown in
Figure 3.1(b). With per-hop or source routing, the message would remain queued
at A waiting for the path with cost 5, through node B. However, per-contact routing
takes advantage of this unforeseen contact and delivers the message to C, where it
will wait for a path with cost 2.

3.3 Impact of Deferring Routing Decisions

Making routing decisions as late as possible seems like a clear win for delay-tolerant
networks because it allows the path taken by a message to change while it is in
transit. For example, consider the situation where the next hop for a message
never arrives due to a failure. At some point, source or per-hop routing would give
up and drop the message because the next hop has disappeared. However, per-
contact routing will automatically use an alternate contact, as soon as the routing
metric decides that is the best path.
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Figure 3.1: Per-contact routing example

Unfortunately, this design decision has one drawback. Link-state routing is
loop free only if the same topology is used to make all the routing decisions along
the path of a message. Source routing guarantees that this occurs because all the
routing decisions are made at the source. In connected networks, per-hop routing
assumes that the topology does not change while the message is in transit. This
is reasonable since the end-to-end delay is measured in milliseconds, and topology
changes are relatively rare, but this assumption does not hold for DTNs. If the link
weights change while the data is in transit, it is possible for a packet to get passed
between two nodes indefinitely. For a loop to occur, the link weights must change
enough so that when the packet gets to one of the nodes, the routing directs the
packet back the way it came.

A situation where this loop could occur in a DTN is shown in Figure 3.2. Ini-
tially, node B has a message for node A, and the shortest path is BCA. When node
C connects to B, the message is forwarded to C. Now, imagine that the cost of
the contact BA decreases because A connects to B. Meanwhile, the cost of the CA
contact increases to 6 because C has not been connected to A for some time. At
this point, the situation is the mirror image of how it began. The message would
have been delivered if it had stayed at B. Now if B connects to C, the message
will be sent back to B. If the connectivity pattern is periodic, the message will
bounce between B and C indefinitely. Short circuit routing aggravates this problem
because the link cost between B and C no longer matters, so the link costs need to
fluctuate less.
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This problem could be mitigated by adding hysteresis. In order to backtrack,
the path must improve upon the next best path by some threshold. The threshold
could increase if a node is revisited multiple times. We do not implement a solution
in our simulations because it would add a significant amount of complexity. In
our simulations, we have observed situations where messages do backtrack, but
have not seen an actual loop where a message makes no forward progress. A real
implementation may need to include a solution because while this situation seems
unlikely to occur, it would cause significant disruption if it did.

3.4 Topology Distribution

Once we have costs for individual links, the information needs to be distributed
throughout the network. Traditional networks typically use link-state or distance
vector algorithms for this purpose, although other choices are possible. We chose
to implement a link-state routing algorithm for two reasons. The primary reason is
that there is a natural match between flooding in link-state algorithms and epidemic
message distribution. Flooding distributes a copy of each link-state table to all
nodes. Epidemic replication distributes a copy of each message to all nodes. Thus,
we can implement a link-state protocol in a DTN using an epidemic algorithm,
which is known to be very robust.

The secondary reason we chose to implement link-state routing is that it pro-
vides the complete topology at each node, which allows the topology to be updated
in a single contact. If a node has been disconnected for a long time it can obtain the
entire topology in a single exchange with any other node. A distance vector algo-
rithm would only distribute paths that pass through the other node, and multiple
exchanges would be required to obtain the entire topology.

Link-state routing does have its disadvantages. First, each node must store the
entire topology in its routing tables, which could be larger than the state required for
distance vector routing. Second, merging topology information from multiple nodes
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becomes more complicated because there is more information to be synchronized.

3.5 An Epidemic Link-State Protocol

Upon connection, nodes exchange summary vectors that list the link-state tables
the nodes have received. Each table is tagged with a sequence number which
permits the nodes to determine which ones are the most recent. The nodes exchange
any missing updates so that they both have the same topology state. Then they
recompute their routing tables and finally can forward messages to the other node.
Since we use per-contact routing, the metric for each link is temporarily set to zero
to represent the fact that messages can be immediately sent to the other node. A
protocol state machine, shown in Figure 3.3, is maintained for each connection.

When the local link state table changes, an update must be propagated to all
nodes in the network. This is an expensive operation. To reduce the overhead, a
node may suppress updates that it decides are unnecessary. However, it is essential
that it continues to make routing decisions using the table that it last advertised,
otherwise the routing tables could be inconsistent between connected nodes, which
might cause an immediate routing loop. Our simple implementation propagates an
update if at least one weight changed by more than 5%, or if a new contact has
been added.

To estimate the overhead of this protocol the size of each protocol message must
be determined. There are two protocol messages exchanged: summary vectors and
topology updates. The summary vector contains one (source id, sequence number)
pair for each node in the network. If we assume each value has a fixed length,
the size of this message scales linearly with the size of the network. The topology
update contains a set of (source id, sequence number, link partner id, metric) tuples
for each contact. In the worst case, the complete topology must be transmitted. In
this case, the topology update has a size that is O(ND), where N is the number
of nodes in the network, and D is the degree of each node. If we assume that
the average node degree is constant, this overhead also scales linearly with the size
of the network. As a somewhat realistic example, if we encode these messages as
arrays and assume each value is a 32-bit integer, an 802.11 packet containing 1 500
bytes of data can store an update with information about 92 links, which would
be sufficient for a network with 15 nodes with an average degree of 6. Thus, the
overhead is acceptable for small networks, but may be a problem for very large
networks.
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3.6 The MEED Metric

Our protocol relies on an estimate of the connectivity in order to make intelligent
routing decisions. To do this, we use the expected-delay metric originally presented
by Jain et al. [21]. This metric computes the expected delay for a message to go
from one node to another using a given contact, assuming that all message arrival
times are equally likely. The derivation of this metric is simple, and is included
in the AppendixA. The final computed metric value is shown in Equation (3.1),
where n is the total number of disconnected periods, di is the duration of a given
disconnected period, and t is the total time interval over which these disconnections
were observed. ∑n

i=1 d2
i

2t
(3.1)

The original metric is computed using the contact schedule for the entire period
that the network is in use. However, it is possible to compute this metric for any
arbitrary time period. If we assume that the future behavior of a contact will be
similar to the past, we can use the value for the past as the current estimate. We
present three techniques for computing this metric: the infinite history window, the
sliding history window, and the exponentially-weighted moving average.

3.6.1 Infinite History Window

The simplest approach is to compute the metric over the entire history of a node.
This is easy to do since the computation only requires a sum of squared discon-
nection times, the current time, and the initial time where the observations began.
Unfortunately, this scheme is somewhat impractical. First, the sum of disconnec-
tion times continues to increase without bound. This means that it may be difficult
to compute this value if a node is running for a long time. Second, if the connec-
tivity pattern for a contact changes for some reason, the metric will average both
the old behavior and the new behavior. This means this approach will take a long
time to adjust to changes.

There is also a small problem with this simple approach. If the contact is
currently down and we include the interval between now and the last time the
contact was available, the metric value can actually decrease. Consider the case
where a contact has a periodic pattern and is up for 5 time units, then down for 15.
This pattern has an expected delay of 152/(2× 20) = 5.625. In Fig. 3.4(a) we plot
this contact’s state in the bottom part of the graph, and the metric in the top part
of the graph. The raw metric line in Fig. 3.4(a) increases when the contact is down,
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and decreases when it is up. However, immediately after the contact goes down,
it continues to decrease. This occurs because we do not know when the contact
will become available next, so including the current disconnected interval makes a
best-case estimate, assuming that the contact will come up in the next instant. To
solve this, we take the maximum of this best-case estimate and the metric when
the contact was last available, as shown by the “max” line in Fig. 3.4(a). This way,
the metric will only decrease when the contact is up, and never when the contact
is down. For a periodic contact the infinite window computation equals the ideal
value just before the contact comes up. However, the metric approaches the correct
value as time approaches infinity.

3.6.2 Sliding History Window

In order to make the metric more responsive to changes, we can compute it over
a sliding window. This means that if the contact-connectivity behaviour changes,
the old behavior will eventually be removed from the history window and no longer
included in the metric. Unfortunately, this also works in reverse. If the history
window does not capture a large enough sample of the contact behavior, it may
fluctuate significantly and not accurately represent the average behavior. In order
to avoid some undesirable behavior that happens when averaging over partial up
or down periods, we round our history window up to the last connect or disconnect
event. Because of this, the metric will oscillate around the true average, even if the
window is exactly the same size as the period of the contact.

Consider the case where a contact has a periodic pattern and is up for 5 time
units, then down for 15. This pattern has an expected delay of 152/(2×20) = 5.625.
Even when the sliding window size is a multiple of the period (20), it oscillates
around the exact metric, as shown in Figure 3.4(b). However, windows that are
much larger than the period, such as the window of size 50 in the figure, oscillate
less.

This version is more complex to compute than the infinite history window ap-
proach. For this metric, we must record all the connection and disconnection times
within the window. In theory, this means that the potential amount of data that
must be stored is infinite, as the contact could go up and down an infinite num-
ber of times within a given time window. Practical systems will have some logical
minimum connection period that is dictated by the link technology. However, the
number of disconnected periods that must be stored could potentially be very large.
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Figure 3.4: Comparison of MEED metric variants
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3.6.3 Exponentially Weighted Moving Average (EWMA)

It is not initially obvious how to use an exponentially weighted moving average to
compute a continuous metric like the expected delay. However, it is possible to
compute it if we pretend that contact behaviour is perfectly periodic, and use an
EWMA to estimate the average connection and disconnection lengths. Thus, each
time a contact goes up or down, we update the estimate as follows:

D = αD + (1− α)di

C = αC + (1− α)ci

E =
D2

2(D + C)

E is the estimated delay, D is the average disconnection time, and C is the
average connection time. With this computation, α is a tuning parameter, where
a higher value means that the metric will react slowly to changes, but will be more
robust to short term perturbations. With a periodic contact, as shown in Fig. 3.4(c),
the metric will match the exact average.

This implementation has the advantage that it requires fixed resources to imple-
ment. Unfortunately, it also has a built-in tendency to underestimate the average
waiting time. The reason is that the averaging of D weights all disconnection peri-
ods equally. However, the exact expected delay computation weights long discon-
nections much more than small disconnections, because in those periods a message
must wait longer, on average, and because there is a higher probability of arriving
during a long wait period.

The figures in this section show that the differences between these three metrics
are relatively small. Thus, we use the infinite window metric, unless otherwise
specified.



Chapter 4

Experimental Evaluation

In this chapter, we present the results of extensive simulations, in order to evalu-
ate the performance of our proposed protocol. We first describe the scenarios we
simulate, then we look at microbenchmarks designed to examine specific aspects
of the design. Finally, we examine the performance of the protocol in plausible
scenarios. For the evaluation, we created DTNSim2, a discrete-event simulator for
delay-tolerant networks [46]. It is based on the simulator used for the original DTN
routing paper by Jainet al. [21]. It uses FIFO, reliable links with fixed bandwidth
and delay.

4.1 Scenarios

In order to validate our requirement of providing good performance over a range
of connectivity patterns, we present simulation results from two very different sce-
narios. To give the scenarios a basis in reality, we used real mobility data. The
first scenario is based on extensive wireless LAN traces from Dartmouth College [6].
The second scenario uses the schedule from Seattle’s bus network [45].

4.1.1 Wireless LAN Scenario

In this scenario, mobile users carry computing devices with radios. When they
are in range of another user, they exchange data. This represents an ad-hoc DTN
that could be created by students at a school, employees at a company, or people
attending a conference. We used mobility data from Dartmouth College’s extensive
wireless LAN traces [6]. They record the network connectivity of more than 2 000
users over two years. The traces show when each user connects and disconnects to

34
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Figure 4.1: Wireless trace converted into a DTN scenario

any of Dartmouth College’s 500 access points. This data is useful because while
the mobility appears to be random, there are patterns that can be exploited.

To transform the wireless LAN traces into an ad-hoc DTN, we consider two
nodes to be connected when they are associated with the same access point at the
same time. Access points are also DTN routers. In order to make the scenarios
a manageable size, only a connected subset of the nodes from the wireless LAN
trace are included. As an example, consider the wireless LAN scenario shown in
Figure 4.1(a). At time 1, the trace file will show that the laptop user is connected
to the access point on the left. Later, it moves out of range of the access point, and
at time 2 it associates with the second access point. A DTN scenario that could
be generated from this data is shown in Figure 4.1(b). One laptop and one access
point from the original scenario were removed.
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The raw Dartmouth data set is much too large for us to simulate. To select a
reasonably sized subset of the data, we used the data from a single month (February,
2003). We then randomly selected an initial node. Next, we found that node’s
“good” neighbours. We defined a “good” neighbour as one that had at least ten
opportunities to communicate over a period of one month. Then we randomly
selected a new node from the good neighbour set, and added that node’s good
neighbours to the set. We repeated this until we had 30 nodes, and we generated
ten different topologies in this fashion. This simple algorithm guarantees that we
do in fact have a connected graph, where each node has some opportunities to
communicate with the rest of the network. In order to eliminate the warm-up and
cool down effects, we only record statistics for messages generated in the second
week.

4.1.2 Bus Scenario

This scenario represents a city that is providing a DTN network by equipping its
buses with wireless devices. As the buses come within wireless range of each other,
they exchange messages. To generate this data, we used the Seattle bus network
schedule, as provided by the University of Washington’s Intelligent Transportation
Systems group [45]. This region’s bus system is quite large, so again we needed
to select a subset of it. To do this, we selected all the buses that ever service a
single route as part of their day. This includes 36 buses, which is comparable in
size to the parameters used for the Dartmouth data. We compute all the times
where the buses are within wireless range, which we considered to be 200 metres,
the nominally quoted range for 802.11b. The scenario lasts for five weekdays and
each day’s schedule is identical. We only record statistics for messages generated
during the second day.

4.1.3 Comparison

These two scenarios were selected because they represent very different connectivity
patterns. The wireless LAN scenario has unpredictable mobility, with some statis-
tical regularity. The bus scenario, on the other hand, is a planned and scheduled
system, and thus has the exact same connectivity on each of the five days. Addi-
tionally, the nature of the connectivity is very different between the scenarios. To
quantify this difference, some scenario metrics are shown in Table 4.1. The scenario
duration is obviously different, as they were generated from different data sets. The
number of nodes is comparable in the two scenarios. The average node degree is
the average number of contacts that appear at least once during the scenario. The
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Table 4.1: Comparison of the wireless LAN and bus scenario parameters

Parameter Wireless LAN Scenario Bus Scenario

Scenario Duration 28 days 5 days
Nodes 30 36
Avg. Node Degree 15.6 22.8
Avg. Up Time 2050 seconds 77.0 seconds
Avg. Inter-contact Time 9.27 hours 5.32 hours
Avg. Total Connected Duration 23.7 hours 0.405 hours
Avg. Num. Connections 41.6 20.0

bus scenario’s average degree is larger, even accounting for the fact that there are
more nodes in the scenario. This indicates that the nodes tend to be connected to
more neighbors than in the wireless LAN scenario. The up time is the time where
each contact is available, the inter-contact time is the time where each contact is
down, and the total connected duration is the total up time for a single contact.
These values are much, much longer in the wireless LAN scenario, because users
carrying laptops tend to stay in one place and move slowly, whereas the buses only
stop for breaks and move quickly. Finally, the number of connections is the number
of times a single contact becomes available. Counter-intuitively, this is higher in
the wireless LAN scenario. The reason is that there are some contacts which go up
and down a large number of times in a short period of time. These anomalies are
likely caused by poor wireless LAN connectivity, and not frequent mobility.

4.2 Microbenchmarks

In order to understand the performance of our protocol, we first consider mi-
crobenchmarks designed to investigate specific aspects of the performance of the
protocol. First we look at the performance under ideal conditions, before varying
buffer space and bandwidth. Next we consider the MEED metric and variants.
Third, we closely examine the performance of per-contact routing and hop-by-hop
flow control. Finally, we study the overhead of our protocol.

We compare the performance of the MEED protocol to three other delay-
tolerant network routing protocols: the earliest delivery (ED) and minimum ex-
pected delay (MED) metrics [21], and epidemic routing [47]. The ED protocol is
used to illustrate the performance that can be achieved if complete contact schedule
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data is available. MED is presented because it uses the same average-delay metric
as MEED, except that its values are computed using future knowledge. Finally,
Epidemic is another protocol that does not require schedule information.

To provide a baseline for comparison, we measure the performance of an “ideal”
protocol. This protocol is the ED metric with infinite buffer space and infinite
bandwidth. This protocol has two attractive properties. First, if it cannot deliver
a message, then it is not possible for that message to be delivered by any protocol.
Thus, it provides an upper bound on the delivery ratio. For this reason, we express
all delivery ratios as a percentage of the messages delivered by the ideal protocol.
Second, when it delivers a message, it is not possible for that message to be delivered
earlier. Thus, it provides a lower bound for delay. When computing average delay,
we only include delivered messages.

In order to quantify the cost of the protocols, we measure the total number
of bytes transmitted. This includes protocol bytes and data bytes, and measures
the total amount of bandwidth consumed by the protocol. In order to establish a
minimum value, we modify the ideal protocol to select minimum hop-count paths
for each message. Thus, it delivers all the messages with the minimum number of
transmissions.

In this section, we run the simulator with an ad-hoc email workload. Each node
generates 10 messages at regular intervals, sent to a single random destination node.
Each message is 10 000 bytes long, which corresponds to users exchanging small
files or email messages. For the wireless LAN scenario, the interval is every 6 hours,
for a total of 112 message generation times. For the bus scenario, the interval is
every hour, for 120 message generations.

4.2.1 Ideal Performance

First, we consider the performance of the four protocols under ideal conditions. We
simulate the two scenarios with infinite buffer space and infinite bandwidth. The
delivery ratios are shown in Figure 4.2(a). For all scenarios with infinite resources,
ED is the same as the ideal protocol, and by definition delivers all the messages.
Epidemic delivers 100% of the messages in these scenarios by flooding the network.
For the bus scenario, all protocols deliver all the messages because the bus schedule
is predictable and repetitive. In the wireless LAN scenario, MEED manages to
deliver little more than 80% of the messages. Considering that this protocol has no
future knowledge, and the mobility in this scenario is random, this is respectable. It
is important to recall that while the ED and MED protocols outperfom MEED, in
reality it is not possible to use them in the wireless LAN scenario because a schedule
of human mobility cannot be obtained in advance. The MED protocol, which uses
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Figure 4.2: Performance under ideal conditions

the true average instead of MEED’s estimated value, delivers around 90% of the
messages, simply because its metric is more accurate because it is computed using
future knowledge.

The delay results, shown in Figure 4.2(b), are more interesting. This figure
makes the differences between the two scenarios very clear, as the ideal average
delivery delay for the wireless LAN scenario is around 85 hours, whereas it is under
10 for the bus scenario. ED and Epidemic match the ideal delay, as expected.
MEED’s delay is larger than the ideal by a fair margin. However, it compares
favorably with MED, matching it in the wireless LAN scenario and slightly beating
it in the bus scenario.

We plot the number of transmitted bytes in Figure 4.2(c). This graph shows
that Epidemic transmits the most messages, by a very wide margin. This is not
surprising, as it floods the network with each message. MEED transmits more
messages than the other shortest path protocols. This is because the MEED metric
is constantly being recomputed, so it is possible for a message will take a bad path,
only to be forced to backtrack later. This problem is emphasized in the wireless
LAN scenario because the connectivity is random. This is the reason that MEED
requires significantly more transmissions in that scenario, than in the bus scenario.
Additionally, ED and MED have no protocol overhead, as they assume that all
nodes have the topology information from the start.
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4.2.2 Impact of Buffer Size

Next we evaluate the impact of buffer space on the DTN routing protocols. We
evaluate each scenario with infinite bandwidth contacts, but limited buffer space.
The amount of buffer space is shown as a percentage of the total number of bytes
generated. For this experiment, we only consider the wireless LAN scenario because
the results for the bus scenario are similar. Looking at the graph of the delivery
ratio in Figure 4.3, we can immediately see that buffer size has a significant impact
on the epidemic protocol. This is because it relies on having sufficient buffer to
have a copy of every message at every node. In this particular scenario, it needs
buffer for approximately 60% of the data generated, and there is a very predictable
relationship between the buffer size and the delivery ratio. The other protocols
require much less buffer space because they use a single copy of each message.
Only when the buffer size drops below 10% of the total traffic generated does
the delivery ratio of the other protocols decrease. Decreasing the available buffer
space is equivalent to increasing the amount of data being transferred. Thus, for
transferring large amounts of data MEED has better performance than epidemic
routing, which is the only other protocol that does not use future information.
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Looking at the latency results in Figure 4.4, we can see that the delay is not
sensitive to the buffer space as the performance does not change much. The average
delay for the ED and Epidemic protocols matches the ideal minimum latency, as
expected. Epidemic’s delay decreases as it drops messages because it drops the
oldest messages first. Thus, the delivered messages are only those that are delivered
quickly. Interestingly, the latency for MED and MEED are very similar, even
though MEED is an estimate of the MED value, and intuitively should be worse.
The reason is that it does not deliver as many messages, so it is not valid to compare
the two directly, without taking into account the delivery ratios in Figure 4.3.

4.2.3 Impact of Bandwidth

For this experiment, all nodes have infinite buffer space but the contacts have
varying data rates. We test the rates between 100 kbps and 10 Mbps. Again,
we only present the results from the wireless LAN scenario as the bus scenario
results do not provide any additional insight. It is important to note that because
the average connection times are so long for the wireless LAN scenario, a large
amount of data can be transferred even at very low data rates. The email workload
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generates a small amount of data (336 MB), so assuming that all the contacts are
up for the average connection time shown in Table 4.1, a data rate of 1.31 Mbps is
sufficient to deliver all the messages that are generated in the scenario over a single
hop. Thus, it is important to note that it is only at data rates below 2 Mbps that
this scenario begins to become bandwidth limited.

For all four protocols, the delivery ratio decreases slightly as the bandwidth
decreases, as shown in Figure 4.5. However, there is no change in their relative
positions until the bandwidth is extremely low. It is important to note that ED
and MED are more sensitive to the reduced bandwidth than Epidemic and MEED.
With infinite bandwidth, ED was able to deliver 100% of the messages, as shown
on the right hand side of Figure 4.3. However, even with 10 Mbps links, it drops
approximately 2% of the messages, and it drops 15% of the messages with 1 Mbps
links. MEED’s performance, by contrast, is nearly flat. It only drops an additional
4% of the messages over the same interval. The reason is that ED and MED use
source routing and select paths assuming that there is no competing traffic. With
the bandwidth restrictions, messages might miss the contact they were supposed to
take and be undeliverable. Epidemic, on the other hand, tries all paths. Thus, if
one contact is being used, it will try others. Similarly, MEED’s per-contact routing
allows it to adapt to the varying conditions.

The results for the latency in Figure 4.6 show that the delay for all protocols
increases slightly as the bandwidth decreases, due to the longer transfer times. This
trend is probably understated, as all the protocols drop messages as the data rate
decreases. This graph shows that MEED’s performance is slightly worse than MED,
as expected. At data rates below 1 Mbps, all the protocols behave erratically. The
reason is that this is the point where the protocols really begin to drop significant
amounts of messages, so the data points here are all measuring the delay for slightly
different sets of messages. MED shows an unusual bump around 2 Mbps, where
its delay increases before decreasing again. The increase is due to the bandwidth
restrictions increasing the average delay for most of the messages. The decrease is
then caused by the delivery ratio decreasing since at that point, MED is only able
to deliver the messages which take the least time to arrive at the destination.

4.2.4 MEED Metric Error

The previous results have shown that MEED can achieve reasonable delivery ratios
and delays. This implies that it is a reasonable metric for selecting paths. Since this
metric estimates a physical quantity, average delay, we wished to test how useful
this metric might be for predicting delivery delay. To answer this question, we
analyzed the performance of the infinite window metric, the sliding window metric
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Figure 4.5: Delivery ratio with varying link bandwidth

(window = 2 days), and the EWMA metric (α = 0.9) over a single hop. We selected
30 random contacts from the wireless LAN scenario and sampled the metric values
at one minute intervals, and compared them to the actual waiting time. Sample
metric values for a single contact are shown in Figure 4.7. In order to make the
error between different contacts comparable, we divided the absolute error by the
average waiting time for each contact. A histogram of the relative errors is shown
in Figure 4.8. This histogram shows that most of the samples fell between -4 and
2 average waiting times of the true value. This is a large range of errors, which
indicates that none of the metric variants are precise. Additionally, the histogram
clearly shows that the infinite window metric has a tendency to overestimate the
waiting time, while the other two metrics tend to underestimate. Both the sliding
window and EWMA variants have a peak at zero error, which is what we ideally
would like to see. However, their distribution clearly underestimates the delay, on
average. The infinite window metric peaks a bit above zero, but due to the shape
of the distribution, its overall average is somewhat closer to zero.

We also evaluated the metric’s performance over complete paths. We instru-
mented the simulator to record the MEED metric value when the message is for-
warded from the source to another node. This is the latest time that the source
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Figure 4.6: Delivery latency with varying link bandwidth

can make an estimate, and thus should be the most accurate estimate available to
that node. We plotted the prediction for each message against the actual recorded
end-to-end latency. Ideally, these two values would be equal, and all the points on
the y = x line. The results for the infinite window metric from the wireless LAN
scenarios are shown in Figure 4.9. This figure shows that there is limited correlation
between the MEED value and the actual end-to-end delay, as the points appear to
be randomly distributed.

The results in this section indicate that the ability for MEED to estimate the
end-to-end delay is not ideal. Part of this limitation is simply because it is an
average. Consider a contact that has two different behaviours, one where the wait-
ing time is small, and another where the waiting time is very large. The exact
average for this contact will be a bad estimate of the end-to-end delay for both
sections, although the average errors will be zero. This suggests that more research
is required here. It may be possible to estimate a worst-case end-to-end delay by
incorporating the variance or a confidence estimate. Alternatively, time-varying
statistical or machine learning approaches may be more accurate.
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Figure 4.7: Sample expected delay metrics for a single contact

4.2.5 MEED Variants

The previous results all used the infinite window variant of the MEED metric. Here,
we will consider the two additional variants presented in Section 3.6. Additionally,
in order to determine what impact the choice of metric has on the performance, we
also implemented a fourth metric variant that is intentionally a bad choice. This
metric uses the time since the contact was last available, and so we call it the “Last
Up” metric. Intuitively, this should not help in selecting a good path. In fact, in
many scenarios the last available contact will not be seen for a long time, and so
this will be a poor choice.

The delivery ratios for all four variants and both scenarios are shown in Fig-
ure 4.10(a). Interestingly, in the wireless LAN scenario, the Last Up metric actually
delivers more messages than the infinite window and EWMA metric. The reason for
this becomes clear when looking at the transmitted bytes, shown in Figure 4.10(c).
The Last Up metric transmits far more bytes than the others. Since the metric
changes so often, it effectively ends up forwarding the message along nearly every
available contact, which explains the large number of transmissions. In the wireless
LAN scenario, because the mobility is pseudo-random, this strategy actually works
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Figure 4.8: Histogram of relative estimation error for 30 contacts

fairly well.
Last Up performs significantly worse in the bus scenario. The reason is that

this scenario is one where Last Up is exactly the wrong choice. When a bus passes
another one, it will be a long time before it passes it again, as generally they are
traveling in opposite directions. Thus, in this case the message ends up getting
passed to buses that have just passed the destination, and won’t see it for a while.
If it remained on one bus, the messages would likely end up being delivered.

For the other three metrics, the performance is very similar. They are each
slightly better than the others in some aspect, and worse in another, and thus
there is no clear winner. However, it is clear that changing the metric can have a
significant impart on the behaviour of the system, as show by the Last Up metric.
Thus, it may be possible to improve the performance of our system, simply by
substituting a superior metric.

4.2.6 Routing Decision Time

In Section 3.2 we argued that making decisions as late as possible is advantageous
in delay-tolerant networks, as it allows the protocol to adapt to changes in both
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Figure 4.11: Comparison of MEED with source, per-hop, and per-contact routing

the estimate of metric values and network topology. In order to investigate the per-
formance impact of this design choice, we implemented two variants of the MEED
protocol: source routing and per-hop routing. The source routing variant plans the
entire path as soon as possible at the source, after which no changes are made. The
per-hop routing variant calculates the next hop when the message arrives at a new
node. At that point, the message can only be sent to that next hop. The delivery
ratio for these variants is shown in Figure 4.11(a), and the delay is shown in Fig-
ure 4.11(b). These graphs show that per-contact routing is significantly better. In
the Wireless LAN scenario, per-contact routing delivers a third more messages than
source routing. The delay increases because more messages are being delivered. In
short, per-contact routing is a key part of the MEED protocol’s performance.

We also studied the impact this design decision has on other protocols to show
that it is applicable to other protocols. We modified the MED protocol to support
per-contact routing, instead of source routing. This means that if a contact becomes
available that does not have the best average performance, but is a good choice when
it is available, the MED per-contact protocol can take advantage of it. While this
changes the performance of MED for all scenarios, it has the most impact when
there are bandwidth limits. Thus, we plot the delivery ratio of this protocol when
there is infinite buffer space but limited bandwidth in Figure 4.12. This figure
shows that per-contact routing improves MED in two ways. First, it increases the
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raw delivery ratio by around 4%. Second, it decreases MED’s sensitivity to the low
bandwidth, as its delivery ratio decreases less than MED with source routing. For
comparison, we have plotted MEED on the same graph. It is essentially the same as
MED with per-contact routing, except that its metric is less accurate which causes
it to lose between 10% and 15% more messages. This shows that the accuracy of
the metric has a significant impact on the delivery ratio. Per-contact routing also
decreases the average delay for MED from 119 hours to 111 hours. It achieves these
gains with some cost: it increases the number of transmitted bytes from 190 MB
to 260 MB.

4.2.7 Hop-by-Hop Flow Control

The shortest-path protocols studied here use a “drop tail” queue policy. If there
is insufficient buffer space when a message arrives, it is dropped. This source of
loss could be reduced by using hop-by-hop flow control, so that the message is
only forwarded if sufficient buffer is available. This scheme has been shown to be
effective at dealing with congestion in wireless sensor networks [19].

The performance with and without flow control for the wireless LAN scenario
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with limited buffer space is shown in Figure 4.13. For ED and MED, flow control
increases the delivery ratio by a few percent when the buffer space is between 3-
10% of the generated messages. When the buffer is very small, it actually makes
things worse. The reason is that with flow control, if the next hop is full, there
is now less buffer space available at the previous node. This can in turn cause
other nodes to block, which prevents some messages from making progress towards
the destination. If the message had been dropped instead, at least one previous
message would be able to make forward progress.

For MEED, flow control improves the performance by a significant margin when
the buffer space is less than 8% of the generated bytes. The difference is that MEED
uses per-contact routing, so when one next hop is blocked because the buffer is full,
it is able to attempt delivery via an alternative route. This means that it can
spread the load across the network. From these results, it seems that hop-by-
hop flow control is a significant improvement for dealing with low-buffer scenarios,
although care must be taken when the available buffer space is extremely limited.
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Figure 4.14: Protocol overhead per connection

4.2.8 Protocol Overhead

In order to measure the overhead introduced by the epidemic distribution of the
link-state tables, we generated 10 topologies from the Dartmouth data with different
sizes. We simulated them for one month without any traffic, and discarded the
overhead in the first week. The protocol is initiated each time a connection is
established, so if a scenario has more connections it will generate more overhead. To
compensate for this, we normalized the overhead by dividing the total protocol bytes
by the total number of connections. This gives us the average bytes of overhead
that is exchanged each time a connection is established.

The average overhead with the 90% confidence interval is shown in Figure 4.14.
The theoretical analysis showed that the overhead grows linearly with the size of
the network, assuming that the node degree stays constant. The overhead here
appears to grow slightly faster than linearly. The reason is that in our scenario,
nodes that share an access point form a clique, which means that adding nodes
tends to increase the average node degree.

The actual amount of data exchanged is still reasonable. With a network of 50
nodes, less than 10 kB is exchanged each time a connection comes up. This will
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take less than a tenth of a second to transmit at 802.11’s base rate of 2 Mbps. This
is a tiny portion of the bandwidth, even if the contact is only up for a few seconds.
With 100 nodes, the average overhead per connection is less than 25 kB, which is
still less than a second of transmission time. However, the overhead could become
unmanageable as the network grows. This suggests that hierarchical routing may
be necessary for very large networks.

4.3 Realistic Scenarios

The previous section looked at the performance of the protocol under various ideal
conditions to understand the impact of individual parameters on the performance
of our protocol. In this section, we look at the performance of four workloads with
plausible combinations of parameters. For each workload, we set the buffer size on
each node to 1 GB because the current price of a 1 GB flash disk is under $100 USD,
so it is reasonable to assume that even small embedded devices can be equipped
with at least this much storage. We set the bandwidth of each contact to 2 Mbps
since that is the base rate for 802.11b, and thus represents a reasonable estimate
of the bandwidth available between two nodes within wireless range. Experiments
using 802.11 in drive-by scenarios report a wide range of average goodputs. The
results vary from an average goodput of 5.5 Mbps [12], down to 0.9 Mbps [35, 3],
depending on speeds and antenna location. Thus, 2 Mbps seems to be a realis-
tic midpoint. Additionally, it is reasonably safe to assume that future wireless
technology improvements will push that data rate even higher.

The scenarios are created by varying two parameters: traffic composition and
communication pattern. For traffic composition, we have an email workload and
a mixed message workload. The email workload is the one that was used in the
previous section, where each node generates 10 messages that are each 10 000 bytes
long. The mixed message workload only generates 5 messages of 10 000 bytes, but
also generates 2 messages that are 1 000 000 bytes each, representing larger files
being exchanged, such as digital photos. The mixed-message workload generates
20 times more traffic than the email workload.

For the communication pattern, we use an ad-hoc pattern and a gateway pat-
tern. The ad-hoc pattern is the same as was used in the previous section, repre-
senting users in the network communicating with each other. The gateway pattern
represents users communicating with a single Internet gateway. To simplify the
scenario, we assume that the gateway node has an infinite bandwidth, zero latency
connection to the Internet, so all outbound and inbound messages are delivered
instantly. For the wireless LAN scenario, we selected the node with the highest
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Figure 4.15: Wireless LAN scenario performance under realistic conditions

degree as the gateway, since it is the node with the best connectivity to the rest of
the network. For the bus scenario, we added a fixed gateway node at a centrally
located bus stop.

4.3.1 Wireless LAN

The results for the four workloads in the wireless LAN scenario are shown in Fig-
ure 4.15. While they are generally similar, a few differences can be observed. The
epidemic protocol consistently delivers more messages than any other protocol. In
the mixed-message workload, the performance of all the protocols decreases due
to the increased amount of traffic in the network. However, MEED’s performance
decreases less than the others, to the point that it outperforms MED in the gate-
way workload. MEED’s ability to adapt to changing network conditions gives it a
distinct advantage in this scenario, where there is a significant amount of network
congestion. Unfortunately, MEED still has a longer delay than the other protocols,
except in the gateway e-mail case where it has lower delay than MED.
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Figure 4.16: Bus scenario performance under realistic conditions

4.3.2 Bus

The bus scenario has a higher average node degree than the wireless LAN scenario.
Correspondingly, the average path length is also lower. This means that bandwidth
and buffer restrictions typically have less impact on the performance in this scenario,
as many of the deliveries occur directly from the source to the destination. Thus,
the delivery ratios are still 100% for all the protocols with the e-mail workloads,
as shown in Figure 4.16(a). However, this scenario also has a very short average
connection time, when two buses pass each other on the road. When there are larger
messages in the network, as is the case with the mixed workload, the performance
changes dramatically. With this workload, MEED outperforms the other protocols.
The reason is that ED and MED plan their routes with the assumption that there
is no competing traffic. This assumption is violated with this workload, as a single
large message can occupy almost all of a contact’s time. Epidemic performs poorly
in this scenario as there is only 11% buffer space and because the contacts do not
last long enough to exchange all the messages.

As for the delay, shown in Figure 4.16(b), MEED outperforms MED for all
the bus scenarios. For the gateway scenarios, MEED’s delay is second only to the
Epidemic protocol. In the other cases, it is only an hour or two more than the ideal
minimum delay.



Chapter 5

Performance Enhancements

The previous chapter shows that the performance of the MEED protocol is reason-
ably good. However in many scenarios the epidemic protocol is able to deliver more
messages with less delay, though at much greater cost. In this chapter, we examine
ways to try and bridge that performance gap by using a small number of copies of
each message, in combination with MEED’s knowledge about the network topology.
We should be able to intelligently select multiple paths in order to approach the
performance of the Epidemic protocol, without incurring its massive and unscal-
able resource cost. We present two techniques for creating multiple copies of each
message: replication and retransmission. In the replication scheme, we explicitly
create multiple copies of the message. With the retransmission scheme, we use a
timeout to indicate when a copy is needed.

5.1 Replicated MEED

With the Replicated MEED approach, we simply make multiple copies of the mes-
sage as it propagates through the network. There are three design decisions to be
made here. The first is when and where to create copies of a message, the second
is which path to use for each copy, and the third is how to organize the messages in
the buffer. Our design philosophy is that adding replication should only improve
the performance of the protocol, insofar as we can guarantee it. Thus, any decisions
we make should not change how the original message is handled.

55
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5.1.1 Copying Decisions

The intention of the Replicated MEED protocol is to use as few additional copies
as necessary in order to improve the delivery ratio and decrease the delay. Thus,
there is a clear cost/performance trade-off. This problem is very similar to limiting
the cost of flooding protocols. Any of the techniques surveyed in Section 2.3.1 could
be applied here.

Techniques for deciding when to make copies can be divided into two broad
categories. The first category includes schemes which explicitly limit the replication.
These schemes maintain some sort of counters to stop the replication once the
desired number of copies have been made. The second category is for schemes that
make a copy when certain conditions are met. These strategies attempt to make
copies only when there is a good reason. Hybrid strategies, which only make copies
when there the conditions are met, and that have a fixed maximum number of
copies, are also possible. We investigate one strategy of each type.

Source Replication

In order to limit the cost, we use a simple scheme where the source makes a limited
number of copies. This is similar to Two-Hop Relay presented in Section 2.3.1.
This strategy presents a very easy way to adjust how much replication is accept-
able. However, if the source only has a single next hop, it cannot take advantage
of alternate routes. With this scheme, we always deliver a copy along the best
path, then deliver a copy to the next best path to the destination, as explained in
Section 5.1.2.

Backtracking Replication

The MEED protocol was designed to permit messages to backtrack. When this
occurs, it indicates that the metrics have changed and the routing now computes
a different best path. However, the original path was at one point considered the
best, and is likely still a good choice. Thus, this seems like a logical opportunity to
exploit some redundancy. Instead of selecting only the current best path, we can
select both paths. Thus, whenever a message will be sent back to the last node it
came from, we will also make a copy of the message, which will be forwarded using
an alternate route.
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5.1.2 Selecting Alternate Paths

The concept of adding replication to the routing protocol is to try multiple routes
simultaneously in order to avoid problems and to take advantage of unforeseen
events. However, for this benefit to be realized, the paths must be at least partially
independent. This means the paths must not share the exact same nodes. It is not
necessary for the paths to be completely disjoint. In other words, it is acceptable
if they have some nodes in common. The reason is that as long as there is a
chance that the two messages will take different amounts of time to traverse the
independent sections of their paths, then there is a chance that using both paths
will be better than using the single best path.

In order to not change the minimum performance of the MEED protocol, we
make no changes to how the path is selected for the first copy of a message. Thus,
we need to select an alternate path for the copies. Since the MEED protocol allows
nodes to backtrack, sending a message along an alternate path is more difficult than
it may appear at first glance. We cannot simply give a message to a node that is not
on the best path, as it will determine that it should immediately send the message
back along the best path. Thus, we must mark messages in such a way that they
are forced to travel along an alternate route to the destination. To do this, we
include a list of forbidden nodes in the message header. To determine an alternate
path, a node recomputes its routing table without any of the forbidden nodes.
This generates a good path that will be independent for at least the immediate
next node, although it will be possible for two messages to meet later along the
path. The allows the original message to follow whichever path the routing system
determines is best, and to backtrack as needed, while forcing the copy to not follow
the same path.

5.1.3 Buffer Management

The final design question is how to manage the replicas in the buffer. Following our
philosophy of not changing the performance of the original protocol, the replicas
are always lower priority than the original messages for both forwarding and buffer
management purposes. Thus, if an unmarked message arrives, we will delete replicas
until there is sufficient space for it. We also need to handle the case where we
have a copy in the buffer, and receive another copy, potentially with a different
priority. This complicates buffer management, as we essentially need to maintain
two independent buffers that share the same storage. Similarly, we only forward
replicas once we have finished processing all the original messages.
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Figure 5.1: Performance of MEED with replication in the wireless LAN scenario
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Figure 5.2: Performance of MEED with replication in the bus scenario

5.1.4 Evaluation

We implemented both the simple source replicated MEED variant, where the source
sends one additional copy of the message, and the backtracking replicated MEED.
We tested the performance of these two protocols on the realistic scenarios from
Section 4.3. The results for the wireless LAN scenario are shown in Figure 5.1, and
for the bus scenario in Figure 5.2.

These results indicate that adding replication increases the delivery ratio and
decreases the delay in most scenarios. In the wireless LAN scenarios, replication
increases the delivery ratio in all scenarios, as shown in Figure 5.1(a). In the ad-hoc
mixed workload, the performance of the replicated variants even meets that of the
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epidemic protocol. In addition, the average delay is reduced across all the scenarios,
in both Figures 5.1(b) and 5.2(b). Interestingly, the two replication variants perform
nearly identically, even though they use very different techniques for selecting when
to make copies of a message. This suggests that either naive schemes are sufficient
for extracting the performance improvement available from replication, or that the
backtracking scheme is not very effective. More investigation is required to gain a
better understanding of the performance trade-offs here.

The disadvantage is that adding more copies of the messages results in more
transmissions. However, Figures 5.1(c) and 5.2(c) show that MEED with replication
still uses less than a third the number of transmissions that the Epidemic protocol
does. Thus, adding replication is a very viable way of improving the performance
without an excessive increase in cost.

5.2 MEED with Retransmissions

Many applications for delay-tolerant networks will require reliable delivery. A tra-
ditional approach to achieving this is to use acknowledgments and retransmissions.
This idea may seem ridiculous in a DTN, as the round-trip time could be extremely
large and difficult to estimate. However, if we consider that this is simply another
way of adding redundancy, we realize that setting the timer to an accurate value
is not critical. If the timer is set too low, we will have extra copies in the network.
If the timer is set too high, then the application may have to wait longer before
receiving an acknowledgment.

Using acknowledgments and retransmissions has two advantages over the simple
replication scheme. First, the source receives a confirmation that the data was in
fact received. For the very large class of applications that need reliable delivery, this
is a required feature. The end-to-end principle applies here: Applications should
not trust users’ critical data, such as digital photos, to a network that has any
chance of losing it. If applications are going to be using acknowledgments anyway,
it seems natural to investigate how the network layer can either use this additional
information, or optimize the process. Harras and Almeroth have made a similar
argument [15]. Second, this scheme adaptively adjusts the level of replication as
needed. If an acknowledgment is received very quickly, no additional copies are
injected. Conversely, if a message is lost or is taking a very long time, multiple copies
will be sent which should naturally lead to a higher delivery ratio and potentially
also to lower delay.

There is, however, one significant disadvantage. For retransmissions to occur,
the source must keep a copy of the data in its buffer until it receives an acknowl-
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edgment. This means that any retransmission scheme effectively has less buffer
space available for forwarding, as it must reserve buffer space for local messages.
There are two design decisions we investigate further. The first is how to send
acknowledgments and the second is how to set the retransmission timer.

5.2.1 Acknowledgments

The naive implementation of acknowledgments in a delay-tolerant network is to
create a tiny message with the acknowledgment and send it back toward the source
using the same routing system as the original message. This works, and has the
attractive properties that it is simple and it requires no modifications to the network
layer. Unfortunately, this means that the acknowledgment will experience similar
performance as the actual message, and thus it may be dropped or experience
variable delays. We can easily do better.

A simple improvement is to make intermediate nodes aware of acknowledgments.
While an acknowledgment is propagating back to the source, it may encounter a
retransmission directed toward the destination. At each intermediate node, if we
compare the acknowledgments to the messages in the buffer, we can remove any
of the messages that have already been received. This is the same as the “death
certificate” concept in epidemic algorithms [8], and it has been shown to reduce the
buffer space requirements in delay-tolerant networks [41, 15].

A second improvement is to use epidemic replication to propagate the acknowl-
edgments. Our performance results show that Epidemic Routing is very robust
when there are sufficient resources. The acknowledgments will be very small, so
even if there are a large number of them, they will not consume too many resources.
Using an epidemic algorithm has three benefits. First, the acknowledgments will
be delivered if there is some way to deliver them. Second, they will be delivered
with very low delay. Finally, they will ensure that any retransmissions that are still
in the network will be deleted as quickly as possible.

5.2.2 Retransmission Timer

In an ideal world, we would have an excellent estimate of the round-trip delay,
and we would be able to compute a reasonable worst-case estimate, as TCP does.
Unfortunately, this seems unlikely to be possible in delay-tolerant networks without
hints from the network layer. If this layer has very accurate information, like the
ED metric, it is very feasible to estimate the round-trip delay with very good
accuracy. However, if it uses a metric like MEED, its estimates will not be useful
for predicting delay, as shown in Section 4.2.4. This is certainly an open research
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problem. Conversely, if we consider that this is simply a technique for adding
redundancy, then we simple need to tune the retransmission timer until we reach
the desired number of additional transmissions. Many adaptive approaches could
be possible, but we do not investigate this idea further.



Chapter 6

Conclusions and Future Work

This thesis presented a design for a shortest path routing protocol for delay-tolerant
networks. The protocol is a link-state routing protocol, where the link-state tables
are distributed by an epidemic routing algorithm. This provides robust performance
and permits a node to obtain the entire topology after a single contact. To estimate
the cost of links, we designed the Minimum Estimated Expected Delay (MEED)
metric, which estimates the average waiting time for a message to go from one node
to another. In order to adapt to changes while messages are in transit, we use what
we call per-contact routing. We recompute the routing table each time a contact
becomes available, and then reroute messages accordingly. While this recomputes
the routing table frequently, which may be expensive, our simulation results show
that it significant decreases delay and increases the delivery ratio.

We presented techniques for further improving the performance of the protocol
by using multiple copies of each message. This increases the cost to deliver each
message, but increases the delivery ratio and decreasing the delay. We argued
that many applications will need acknowledgments, so potentially routing protocols
should take advantage of them in order to improve performance.

Our experimental performance evaluation shows that in many realistic scenarios,
we are able to meet and even exceed protocols that either know the future contact
schedule, or flood the network with messages. Since our protocol requires no con-
figuration, it represents an important development for building real delay-tolerant
networks.
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6.1 Future Work

Our protocol uses an epidemic protocol for distributing link-state tables, and we
proposed using an epidemic protocol for acknowledgments. These applications
leverage its strong performance, and limits the cost by only sending very small
messages. This suggests that perhaps epidemic routing could serve as a control
plane, available for small high-priority messages. An important portion of user
traffic could fit into this category, such as e-mail messages. This approach would
provide fast, reliable delivery for small messages, while still supporting efficient de-
livery of larger data items. This hybrid strategy could be a powerful way of building
reliable and performant routing infrastructure for delay-tolerant networks.

We briefly described some of the issues involved in selecting alternate paths in
Section 5.1.2. However, we essentially ignored the problem. There is significant
room for further investigation along both theoretical and practical lines. From a
theoretical perspective, there is a question of how to select alternate paths, and how
disjoint they must be before there is any benefit. Intuitively, it seems as though
related problems in operations research might shed some light on these questions,
as they may be similar to problems that arise in transportation. From a practical
perspective, we need adaptive algorithms that select alternate paths that are the
most useful. Our simple “copy when backtracking” policy is effective, but it seems
as though better options probably exist. After all, the fact that backtracking is
occurring indicates that a replica should have been sent along an alternate path
much sooner. This is a difficult optimization problem that needs to balance the
cost against the incremental benefit of making more copies.

The papers surveyed in Chapter 2 cover a large range of the mobility spectrum
shown in Figure 2.1. Precise schedules are covered by the forwarding strategies,
random networks are covered by epidemic and tree-based strategies, and the net-
works with implicit schedules are covered by some of the variants. However, one
type of network in this spectrum has not been well-examined: networks with im-
precise schedules. These networks have fairly predictable contact schedules, which
should be leveraged to improve performance, but it is not clear if the techniques
pioneered for precise schedules can be used without modifications. The bus sce-
nario presented here is a perfect example for this type of work, as both a published
schedule and measured data are available.

DTNs must be able to integrate multiple types of networks together. This means
that techniques will be required that allow messages to be exchanged between DTNs
that have different properties and possibly use different routing protocols. None
of the current work in this area addresses this issue. The protocol presented here
was designed with a single, moderately-sized DTN in mind. It will not be sufficient
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for extremely large networks, or networks with widely varying requirements and
performance characteristics. Additionally, there is an extremely important network
that most DTNs will want to communicate with: The Internet. One proposal that
enables communication between DTNs and the Internet is the Tetherless Commu-
nication Architecture [38]. Any widely adopted DTN routing protocol will need to
address these issues.

Finally, it is impossible to determine what approach is the right one when there
are no delay-tolerant networks being actively used. Perhaps the most important
future work is to deploy DTN applications, and then see what routing problems
occur in practice. At the moment, there are a number of prototype DTNs that
are being used to measure connectivity properties [3, 18, 6]. These projects are an
extremely important first step. However these networks are not yet being used. It
is difficult to predict the requirements for DTN routing strategies and to evaluate
their performance without any information about what traffic patterns would be
relevant. Building more experimental deployments and applications is critical for to
be able to determine where DTN routing strategies need improvement. Protocols
that require no configuration, such as the one presented here, can help make this
task feasible.



Appendix A

Derivation of the Expected Delay

The expected delay for a contact is computed assuming that all arrival times are
equally likely. When the contact is up, the waiting time is zero. When the contact
is down, the waiting time is the time until the contact comes back up again, as
shown in Figure A.1. Since the arrival time probability distribution is uniform, to
compute the expected value of the waiting time we can compute the area under the
curve, and then divide by the length of the time interval. For a single disconnected
interval, di, the area under the curve is given by 1

2
d2

i . The area under a connected
interval is 0. Thus, the final metric is given by:

MEED =

∑n
i=1

1
2
d2

i

t
(A.1)

=

∑n
i=1 d2

i

2t
(A.2)
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