
Improving Python’s Memory
Allocator

Evan Jones

ejones@uwaterloo.ca

http://evanjones.ca/

Outline

The Problem

Inner workings of the memory allocator

A Solution

The Future?

Finding the Problem

Application with “bursty” memory usage:
Large computation (10 - 30 minutes)

Many, many short simulations (2 - 3 hours)

Result: 2 GB of memory occupied by Python for
hours

Simulation performance suffered

Shared system: other users not able to use it

The Cause

Python never releases memory

Good if Python is the only process
Very low overhead

Bad if need to co-operate

Workarounds

Do not allocate memory in a long running Python
process

Perform one-time computations via fork()
Store temporary results in the file system

This shows that Python’s memory management is
not solving the whole problem

Memory Allocator Gory Details

Pymalloc: default in 2.3

Allocates memory in 256kB chunks (arenas)

Used for objects 256 bytes in size

Memory Layout

Arena (256 kB)Pool (4 kB) Header

Block

Block

Block

Pool (4 kB)

Padding

Waste

Allocating Memory

1-8 Bytes

…

249-256

Pool

…

Free Block

usedpools

…

Free Block

Free Block

Pool

9-16

17-24

…

Free Block

Free Block

Free Block

…

…

…

Allocating More Pools

freepools

Pool

Pool

…

Arena

arenabase

Allocated
Pools

Available
Memory

Freeing Memory

Add block to pool’s free list

If there were no other free blocks:
Add pool to usedpools

If the pool is completely available:
Remove from usedpools, add to freepools

Solving the Problem

Need to collect pools from each arena

When arena is unused, free it

Need data structure to track pools
Maintain more information about each arena

Used Arenas Data Structure

Arena

…

Free Pool

…Arena

…

Free Pool

Free Pool

Free Pool

partially_allocated_arenas

Results

Python now releases memory

Small overhead when pools freed/allocated

Extra overhead if cyclically
allocating/deallocating many objects

Example: Cyclic Allocation

0.0

100.0M

200.0M

300.0M

400.0M

500.0M

600.0M

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

B
yt

es
 A

llo
ca

te
d

Time (seconds)

Ideal
Original

New

Example: Real Application

0.0

100.0M

200.0M

300.0M

400.0M

500.0M

600.0M

0.0 200.0 400.0 600.0 800.0 1.0k 1.2k

B
yt

es
 A

llo
ca

te
d

Time (seconds)

Ideal
Original

New

Example: With Reallocation

0.0

100.0M

200.0M

300.0M

400.0M

500.0M

600.0M

700.0M

800.0M

0.0 200.0 400.0 600.0 800.0 1.0k 1.2k 1.4k 1.6k

B
yt

es
 A

llo
ca

te
d

Time (seconds)

Ideal
Original

New

Current Status

Patch in the patch tracker

Works on 2.3, 2.4 and 2.5

Future work:

Free lists for integers, floats, lists, dicts

Questions?

Evan Jones

ejones@uwaterloo.ca

http://evanjones.ca/

