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Outline

m The Problem

® Inner workings of the memory allocator
m A Solution

m The Future?



Finding the Problem

m Application with “bursty” memory usage:
Large computation (10 - 30 minutes)

Many, many short simulations (2 - 3 hours)
m Result: 2 GB of memory occupied by Python for
hours

Simulation performance suffered

Shared system: other users not able to use it



The Cause

Python never releases memory

®m Good if Python 1s the only process

Very low overhead

m Bad if need to co-operate



Workarounds

Do not allocate memory in a long running Python
process

m Perform one-time computations via fork()
m Store temporary results in the file system

This shows that Python’s memory management 1S
not solving the whole problem



Memory Allocator Gory Details

®m Pymalloc: default in 2.3
m Allocates memory in 256kB chunks (arenas)

m Used for objects < 256 bytes in size
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Allocating Memory
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Allocating More Pools
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Freeing Memory

m Add block to pool’s free list

m If there were no other free blocks:
Add pool to usedpools

m If the pool 1s completely available:

Remove from usedpools, add to freepools



Solving the Problem

m Need to collect pools from each arena

® When arena 1s unused, free it

m Need data structure to track pools

Maintain more information about each arena



Used Arenas Data Structure
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Results

m Python now releases memory
® Small overhead when pools freed/allocated

m Extra overhead if cyclically
allocating/deallocating many objects



Example: Cyclic Allocation
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Example: Real Application
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Example: With Reallocation
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Current Status

m Patch in the patch tracker
m Works on 2.3, 2.4 and 2.5

Future work:

m Free lists for integers, floats, lists, dicts
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