Improving Python’s Memory

Allocator

Evan Jones
ejones@uwaterloo.ca

http://evanjones.ca/

Outline

m The Problem

® Inner workings of the memory allocator
m A Solution

m The Future?

Finding the Problem

m Application with “bursty” memory usage:
Large computation (10 - 30 minutes)

Many, many short simulations (2 - 3 hours)
m Result: 2 GB of memory occupied by Python for
hours

Simulation performance suffered

Shared system: other users not able to use it

The Cause

Python never releases memory

®m Good if Python 1s the only process

Very low overhead

m Bad if need to co-operate

Workarounds

Do not allocate memory in a long running Python
process

m Perform one-time computations via fork()
m Store temporary results in the file system

This shows that Python’s memory management 1S
not solving the whole problem

Memory Allocator Gory Details

®m Pymalloc: default in 2.3
m Allocates memory in 256kB chunks (arenas)

m Used for objects < 256 bytes in size

Memory Layout

Pool (4 kB) Header, Pool (4 kB)

Arena (256 kB)

Padding |
Block E

Block

Block i

Waste ,

Allocating Memory

usedpools

1-8 Bytes

9-16

v

17-24

v

4
4

249-256

Pool

(
{L

Free Block

Pool

Free Block

Free Block

4
4

Free Block

Free Block

Free Block

Allocating More Pools

freepools Arena
Pool
Allocated
__Pools _ _|
. arenabase —» Available
00 Memory

Freeing Memory

m Add block to pool’s free list

m If there were no other free blocks:
Add pool to usedpools

m If the pool 1s completely available:

Remove from usedpools, add to freepools

Solving the Problem

m Need to collect pools from each arena

® When arena 1s unused, free it

m Need data structure to track pools

Maintain more information about each arena

Used Arenas Data Structure

partially_allocated_arenas —%~

Arena

—

4>

Arena

4

Free Pool

R

Free Pool

4

Free Pool

4

Free Pool

;

Results

m Python now releases memory
® Small overhead when pools freed/allocated

m Extra overhead if cyclically
allocating/deallocating many objects

Example: Cyclic Allocation

Bytes Allocated

600.0M

500.0M

400.0M

300.0M

200.0M

100.0M

0.0

I

I

I

1 1 1

I

I

I

0.0 10.0

20.0

30.0

I
40.0 50.0 60.0
Time (seconds)

70.0

80.0

90.0

100.0

Example: Real Application

Bytes Allocated

600.0M T T T T T
Ideal
New
BOO.OM [T pe A e\ .
4000M - A e .
300.0M | R .
200.0M | f S S — .
100.0M [ofrmmmmsbinsi b T .
00 | | l | |
0.0 200.0 400.0 600.0 800.0 1.0k 1.2k

Time (seconds)

Example: With Reallocation

Bytes Allocated

800.0M

700.0M

600.0M

500.0M

400.0M

300.0M

200.0M

100.0M

0.0

0.0

[[[[[[[

Ideal
ffffffffffffffff New ——

| | | I | | |

200.0 400.0 600.0 800.0 1.0k 1.2k 1.4k
Time (seconds)

1.6k

Current Status

m Patch in the patch tracker
m Works on 2.3, 2.4 and 2.5

Future work:

m Free lists for integers, floats, lists, dicts

Questions?

Evan Jones
ejones@uwaterloo.ca

http://evanjones.ca/

